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Interdisciplinary Workshop on

Information and Decision in Social Networks
November 8 & 9, 2012

This workshop is being organized by the Connection Science and Engineering Center at MIT.

Organizers:

Vincent Blondel, UCLouvain (Belgium) and LIDS, MIT
Costis Daskalakis, CSAIL, MIT

David Gamarnik, Sloan School, MIT

Asu Ozdaglar, LIDS, MIT

Alex 'Sandy' Pentland, Media Lab, MIT

Devavrat Shah, LIDS, MIT

John Tsitsiklis, LIDS, MIT

Support Staff:

For administrative requests and general questions about the conference, please contact Lynne or Nicole.
Lynne Dell — Administrative Support — 617-452-3679

Nicole Freedman — Administrative Support — 617-253-3818

For problems with the website, or technical questions regarding the conference, please contact Brian.
Brian Jones — Technical Support — 617-253-4070

Location:
The workshop will take place on the 6™ floor of the MIT Media Lab (building E14).
75 Amherst Street, E14 room 674, Cambridge, MA

Travel and accommodation:

Workshop participants travelling to Cambridge should arrange their travel and accommodation; no support will
be provided by the workshop organizers. There are several hotels close to MIT campus, including the historic
Kendall Hotel and the Marriott Cambridge (for both hotels, please ask for the MIT rate).

Plenary Speakers:

» Prof. Vincent Blondel, Dept. of Applied Mathematics, Université catholique de Louvain LIDS, MIT

= Prof. Michael Kearns, Dept. of Computer and Information Science and Market and Social Systems
Engineering, University of Pennsylvania

= Prof. Alvin Roth, Dept. of Economics, Harvard University and Stanford University

Panel:
The program will also feature a panel entitled "What problems does network research need to solve?" with
leading thinkers from the communication, mobile, banking, and information industries. The participants are:

Steve Whittaker, BT

Ken Gabriel, Motorola Mobility
David Zafrilla-Gonzales, BBVA
Martin Wattenberg, Google

The panel will be moderated by Professor Alex Pentland.
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MIT

Thursday, November 8, 2012

8:30 Registration

8:45-9:00 Opening Remarks

9:00-10:00 Industry Panel — “What problems does network research need to solve?”

10:00-10:30 Coffee Break

10:30-11:30 Brief Talks — Session 1: “Structure and Communities in Networks”

11:30-11:45 Break

11:45 -12:45 Brief Talks — Session 2: “Dynamics and Networks”

12:45 - 14:00 Lunch - maps to local restaurants available at the registration desk
Invited Plenary Presentation:

14:00-14:30 Professor Vincent Blondel, Université catholique de Louvain and MIT
"Social communities and mobile phone communication networks”

14:30-15:30 Poster Session — 3" Floor Atrium

15:30-16:00 Coffee Break

16:00-17:30 Brief Talks — Session 3: “Information Propagation, Influence and Control”

Friday, November, 9, 2012

8:30 Registration
Invited Plenary Presentation:

9:00-9:30 Professor Alvin Roth, Harvard University and Stanford University
“Compatibility Networks in Kidney Exchange”

9:30-9:45 Break

9:45-10:45 Brief Talks — Session 4: “Information Propagation, Influence and Control”

10:45-11:15 Coffee Break

11:15-12:30 Brief Talks — Session 5: “Social Data Collection and Analysis”

12:30-14:00 Lunch - maps to local restaurants available at the registration desk
Invited Plenary Presentation:

14:00-14:30 Professor Michael Kearns, University of Pennsylvania
“Competitive Contagion, Anarchy, and Budgets”

14:30-15:30 Poster Session - 3" Floor Atrium

15:30-16:00 Coffee Break

16:00-17:00 Brief Talks —Session 6: “Structure and Communities in Networks”

17:00-17:15 Break

17:15-18:15 Brief Talks —Session 7: “Opinion Dynamics and Learning”




Program Outline
Thursday
November 8

\ 8:30 Registration

11:30-11:45: Coffee Break

\ 8:45-9:00 Opening Remarks

9:00-10:00 Industry Panel
What problems does network research need to solve?

The world is moving to distributed, network systems for health,
finance, work, government, and community. But there are big
questions about how well these systems really work...do they
make the right decisions...and we know little about their
stability, optimality or how they will change society. We have
four leading thinkers from the communication, mobile, banking,
and information industries who will help us understand where
the research community needs to go.

Participants:

Steve Whittaker, BT

Ken Gabriel, Motorola Mobility
David Zafrilla-Gonzales, BBVA
Martin Wattenberg, Google
Moderator:

Alex Pentland

10:00-10:30 Coffee Break

10:30-11:30 Brief Talks Session 1
Structure and Communities in Networks

Network structure and the aggregation of information: theory
and evidence from Indonesia

V. Alatas, World Bank

A. Banerjee, MIT

A.G. Chandrasekhar, Microsoft Research

R. Hanna, Harvard University

B.A. Olken, MIT

Processing Power Limits Social Group Size: Computational
Evidence for the Social

Brain Hypothesis

T. David-Barrett, University of London

R.I.M. Dunbar, University of Oxford

Scaling Theory of Human Mobility and Spatial Network

P. Deville, Université Catholique de Louvain

D. Wang, Northeastern University, Dana Farber Cancer
Institute

C. Song, Northeastern University, Dana Farber Cancer
Institute

N. Eagle, Northeastern University

V. Blondel, Université Catholique de Louvain

A. Laszl6 Barabasi, Northeastern University, Dana Farber
Cancer Institute, Harvard Medical School

Local computation of network centrality
C. Lee, MIT

A. Ozdaglar, MIT

D. Shah, MIT

11:45-12:45: Brief Talks Session 2
Dynamics and Networks

Social Learning and Network Uncertainty
I. Lobel, New York University
E. Sadler, New York University

Intermediation and Exclusive Representation in Financial
Networks
|. Fainmesser, Brown Univ.

Competitive Marketing Strategies over Social Networks
K. Bimpikis, Stanford University

A. Ozdaglar, MIT

E. Yildiz, Accenture Technology Labs

Nine Facts, Three Parameters and One Theory: A Precise
Analytical Model for the Dynamics of Industry Location
Networks

R. Charan, MIT

C. Hidalgo, MIT

12:45 — 14:00: Lunch

14:00-14:30 Invited Plenary Presentation
Professor Vincent Blondel

"Social communities and mobile phone communication
networks”

Abstract:

We describe several recent results on large network analysis with a
special emphasis on community detection and on the analysis of
mobile phone datasets. In particular, we describe two simple and
efficient methods - the "Louvain method" and the recent Partition-
Merge method - for the detection of communities. Partition-Merge is a
general and versatile method that allows to turn any existing
centralized algorithm for graph computation distributed while keeping
accuracy guarantees. The Louvain method - now used by LinkedIn for
its visualization application InMaps - has sub-quadratic computational
complexity and can be routinely used for analyzing networks with
billions of nodes or links.

We analyze communities obtained on a nationwide dataset of criminal
records, as well as on a social network constructed from mobile phone
communications in Belgium and in France on periods covering several
months. In the later we observe a gravitational law of social interaction
as well as spatially distributed social structures that have potential
political implication.

We finally describe applications of mobile phone dataset analysis for a
range of applications such as urban planning, traffic optimization,
monitoring of development policy, crisis management, and control of
epidemics. With these applications in mind we overview the

ongoing "Data for Development" (D4D) challenge
(http://www.d4d.orange.com/) organized jointly with Orange on the
analysis of mobile phone datasets from an African country and for
development purposes. So far the D4D challenge has attracted
projects by more than 200 research groups.
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14:00-14:30 Invited Plenary Presentation Cont.

Bio:

Vincent D. Blondel is professor of applied mathematics at the
University of Louvain (Belgium) were he has been department head for
close to a decade. He is also affiliated with the Massachusetts Institute
of Technology (Cambridge, USA) where he was a visiting

professor and Fulbright scholar in 2004-2005 and again in 2010-2011.
Vincent has held various positions with the University of Oxford, the
Australian National University, the Santa Fe Institute. In 2012-2013 he
is the Kokotovic Distinguished Visiting Professor at the University of
California (Santa Barbara). He has directed more than thirty PhD and
Master thesis and is the recipient of several international prizes for
research done in mathematical control theory, theoretical computer
science and network science. Vincent is the coordinator a national
research network between 200+ researchers in systems and control in
Belgium, Princeton and Stanford and he is the Belgian coordinator of
the mammoth one billion dollars EU research Flagship proposal
FuturlCT (under review!).

14:30-15:30 Poster Session 1

IRIE: Scalable and Robust Influence Maximization in Social
Networks

K.Jung, W. Heo, W. Chen

Exploring the effect of the duration and period of Face-to-Face
interactions on Close Friendships
R. Oloritun, A. Pentland, A. Madan, |. Khayal

Change in BMI Accurately Predicted via Social Exposure
R. Oloritun, T. Ouarda, S. Moturu, A. Madan, A. Pentland, I.
Khayal

The Rewarding Nature of Matchmaking
L. Anik, M. Norton

Graphlet decomposition of a weighted network
H.Soufiani, E. Airoldi

Optimal Induction of a new contact in a social network
V. Borkar

Why are your Facebook “friends” not optimal?
G. Ducoffe, D. Mazauric, A. Chaintreau

Modeling balance in social networks
P.De Leenheer, V. Traag, P. Van Dooren

Understanding User Triads on Facebook
D. Doran, A. De la Rosa Algarin, S. Gokhale

The value of feedback on containment of epidemics on social
networks
K. Drakopoulos, A. Ozdaglar, J. Tsitsiklis

Sociodynamic Discrete Choice: Equilibrium Behavior of the
Nested Logit Model with Social Interactions

E. Dugundiji

The effect of leader centrality on team performance

K. Ehrlich, H. Tong

Game Theoretic Formation of a Centrality Based Network
R. Tatko, C. Griffin

14:30-15:30 Poster Session 1 Cont.
Causal Strategic Inference in Networks
M. Irfan, L. Ortiz

Analyzing Scrip Systems: Selection Rules and Optimality
K. Johnson, D. Simchi-Levi, P. Sun

Strategic Disciplining Behavior in Socialized KingPawn
J. Judd

An internet experiment on bargaining
C. Chang, Y. Kanoria, A. Montanari, M. White

Disrupting the Spread of Information
A. Khanafer, B.Touri, T.Basar

More Contentious Issues Lead to More Factions: Bounded
Confidence Opinion Dynamics of Bayesian Decision Makers
K. Varshney

15:30-16:00 Coffee Break

16:00-17:30 Brief Talks Session 3
Information Propagation, Influence and Control

Trends Prediction in Social Networks Using Influence Diffusion
Models

Y. Altshuler, MIT

W. Pan, MIT

A. Pentland, MIT

The Fallacy of Pigeonholing Global Users into Local Models
C. Budak, UCSB

D. Agrawal, UCSB

A. El Abbadi, UCSB

Apple vs. Android: a comparison of social effects in adoption
J. Bjelland, Telenor ASA

G. Canright, Telenor ASA

K. Engg-Monsen, Telenor ASA

P. Roe Sundsgy, Telenor ASA

R.S. Ling, IT University / Telenor ASA

Connectivity & Collective Action in Social Networks
N. Hassanpour, Yale University

J. Liu, Yale University

S. Tatikonda, Yale University

An Analysis of One-Dimensional Schelling Segregation
C. Brandt, Stanford University

N. Immorlica, Northwestern University

G.Kamath, MIT

R. Kleinberg, Cornell University

On Bitcoin and Red Balloons

M. Babaioff, Microsoft Research
S. Dobzinski, Cornell University
S. Oren, Cornell University

A. Zohar, Microsoft Research




Program Outline

November 9

8:30 Registration

9:00-9:30 Invited Plenary Presentation:
Professor Alvin Roth
“Compatibility Networks in Kidney Exchange”

Bio:

Al Roth received his B.S. in OR from Columbia University in
1971, and his Ph.D. in OR from Stanford in 1974. He has
taught at the U of |, Pitt, Harvard, and now Stanford. Several
weeks ago he was awakened from a sound sleep to learn that
he had won the 2012 Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel.

9:30 — 9:45 Break

9:45-10:45 Brief Talks Session 4
Information Propagation, Influence and Control

On Threshold Models over Finite Networks
E.M. Adam, MIT

M.A. Dahleh, MIT

A. Ozdaglar, MIT

A Nonparametric Method for Early Detection of Trending
Topics

S. Nikolov, MIT, Twitter, Inc.

D. Shah, MIT

Active Influence in Dynamical Models of Structural Balance in
Social Networks

T.H. Summers, ETH Zirich

I. Shames, University of Melbourne

SODEXO: A System Framework for Deployment and
Exploitation of Deceptive Honeybots in Social Networks
Q. Zhu, University of lllinois at Urbana-Champaign

A. Clark, University of Washington, Seattle

R. Poovendran, University of Washington, Seattle

T. Basar, University of lllinois at Urbana-Champaign

11:15-12:30: Brief Talks Session 5 Cont.

Homophily does not inflate contagion estimates in a social
dilemma laboratory experiment

J.J. Jordan, Harvard University

D. G. Rand, Harvard University

S. Arbesman, Harvard University & Ewing Marion Kauffman
Foundation

J. H. Fowler, Harvard University & UCSD

N. A. Christakis, Harvard University & Harvard Medical School

Topic-Specific Communication Patterns in Email Data
P. Krafft, University of Massachusetts Amherst

J. Moore, University of Massachusetts Amherst

H. Wallach, University of Massachusetts Amherst

B. Desmarais, University of Massachusetts Amherst
J. ben-Aaron, University of Massachusetts Amherst

Directed Acyclic Motifs for Conversation Analytics
L. R. Varshney, IBM Thomas J. Watson Research Center

12:30-14:00 Lunch

10:45-11:15 Coffee Break

11:15-12:30: Brief Talks Session 5
Social Data Collection and Analysis

Game in the Newsroom: Greedy Bloggers for Picky Audience
A. May, Columbia University

A. Chaintreau, Columbia University

N. Korula, Google

S. Lattanzi, Google

A Comparative Study of Geographic Routing in Social Network
Based on Mobile Phone Data

C. Herrera, MIT

T. Couronne, Orange Labs

Z. Smoreda, Orange Labs

C. M. Schneider, MIT

R. M. Benito, MIT

M. C. Gonzalez, MIT

14:00-14:30 Invited Plenary Presentation:
Professor Michael Kearns

“Competitive Contagion, Anarchy, and Budgets”

Abstract:

We examine a game-theoretic model of "competitive
contagion" in networks, where two competing companies or
other entities have limited budgets to seed initial infections in
an underlying social network, which then mediates stochastic
contagion. The payoff to each party is their final number of
infections, which at equilibrium may come at the expense of
the other party. In this model, we provide characterizations of
the Price of Anarchy and a new notion called the Budget
Multiplier. These characterizations depend on properties of the
local stochastic dynamics of contagion and network structure,
and in some cases exhibit sharp threshold behavior.

Joint research with Sanjeev Goyal of the University of
Cambridge.

Bio:

Michael Kearns is the National Center professor of Computer
and Information Science at the University of Pennsylvania,
where he is the director of the new Penn program in Market
and Social Systems Engineering. His research interests
include topics in machine learning, algorithmic game theory,
social networks, computational finance and artificial
intelligence.
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14:30-15:30 Poster Session 2

Phase Transitions for Information Spreading in Random
Clustered Networks with Arbitrary Contact Rates

S. Lim, N. Kwak, K. Jung

Using Social Influence to Predict Subscriber Churn
D. Doran, V. Mendiratta, C. Phadke, D. Kushnir, H.
Uzunalioglu

Eulerian Opinion Dynamics with Bounded Confidence and
Exogenous Inputs
A. Mirtabatabaei, P. Jia, F. Bullo

State-Dependent Opinion Dynamics
D. Acemoglu, M. Mostagir, A. Ozdaglar

Sparsifying Defaults: Optimal bailout policies for financial
networks in distress
Z. Li, |. Pollak

Social Mobilization in Context
A. Rutherford, M. Cebrian, S. d’'Souza, E. Moro, A. Pentland, I.
Rahwan

Baiting Strategies for Viral Marketing
L. Seeman, Y. Singer

Search Friction and the Stationarity of Networked Markets
R. Berry, T. Nguyen, V. Subramanian

Social Behavior and Human Mobility
J. Toole, C. Herrera-Yague, C. Schneider, M. Gonzalez

On Language Formation in a Noisy Environment
B.Touri, C. Langbort

Focal Vocabularies vs. Shared Vocabularies in Social
Networks: Balancing Individual Concerns and Social Exchange

A. Mani, L. Varshney, A. Pentland

How many people you have to know to talk to most people?
T. Wang, P. Hui

Collaborative Human Decision Making with Imperfect
Information
T.Wimalajeewa, P. Varshney

A Bayesian Approach for Predicting the Popularity of Tweets
T. Zaman, E. Fox, E. Bradlow

Coordination with Local Information
M. Dahleh, A.Tahbaz-Salehi, J. Tsitsiklis, S. Zoumpoulis

Dynamic Pricing for Revenue Maximization in the Presence of
Social Influences
B. T. Swapna, A. Eryilmaz, N. Shroff

Boosting the Public Health against Infectious Diseases through
Information Dissemination in Social Networks
F. Darabi Sahneh, C. Scoglio

14:30-15:30 Poster Session 2 Cont.

Exploring the role of duration of interaction in ad-hoc mobile
face-to-face networks

R. Oloritun, A. Pentland, A. Madan, I. Khayal

Language, Knowledge, and Power in the International System
— A Linguistic Network Analysis of Published Political Science
Research by Nation-State from 1991 to 2008.

C. Gomez, D. McFarland

15:30-16:00 Coffee Break

16:00-17:00 Brief Talks
Session 6: Structure and Communities in Networks

Artificial Social Scientist: an Application to Marriage Networks
T. Menezes, CAMS, CNRS/EHESS, France
C. Roth, CMB, CNRS/HU/MAEE, Germany

Urban characteristics attributable to density-driven tie
formation

W. Pan, MIT

G. Ghoshal, Harvard University

C. Krumme, MIT

A. Pentland, MIT

M. Cebrian, UCSD

Structural Analysis of Viral Spreading Processes in Social and
Communication Networks Using Egonets
V. M. Preciado, Univ. of Pennsylvania

On the structure of communities in networks
B. Abrahao, Cornell University

S. Soundarajan, Cornell University

J. Hopcroft, Cornell University

R. Kleinberg, Cornell University

17:00 — 17:15: Break

17:15-18:15 Brief Talks
Session 7: Opinion Dynamics and Learning

On the Convergence of the Hegselmann-Krause System
A. Bhattacharyya, Princeton University

M. Braverman, Princeton University

B. Chazelle, Princeton University

H. L. Nguyen, Princeton University

Variational Inference for Label Aggregation in Crowdsourcing
Q. Liu, Univ. of Irvine

J. Peng, TTI-C, MIT

A. Ihler, Univ. of Irvine

Generalized Mean-Field Approximation for Opinion Spreading
in Social Networks

S. Lim, KAIST

K. Jung, KAIST
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NETWORK STRUCTURE AND THE AGGREGATION OF INFORMATION:
THEORY AND EVIDENCE FROM INDONESIA

VIVI ALATAS™, ABHINIT BANERJEE!, ARUN G. CHANDRASEKHAR?, REMA HANNA*,
AND BENJAMIN A. OLKENY

ABYTRACT., We use a unique data~set from Indoneais, on what individuals know -about the ncome
distribution in their viliage to test theories such as Jackson and Rogers (2007) that link information
aggregation in networks to the structure of the network, The observed patterns are consistent with a
basic diffusion model: more central individuals are better informed and individuals are able to better
evaluaie the poverty status of those to whem they are more socially progimate. To understand
what the theory predicte for cross-village patierns, we estimate s simple diffusion model using
within-village variation, simulate network-level diffusion under this model for the over 600 different
networks in our dats, and use this simulated data to gauge what the simple diffusion model predicts
for the cross-village relationship between information diffusion and network characteristics {e.g.
clustering, density). The coefficients in these simulated regressions are generally consistent with
relationships suggested in previous theoretical work, even though in our setting formal anslytical
predictions have not been derived. We then show that the qualitative predictions from the simulated
mode] largely match the actual date in the sense that we obtain similar results both when the
dependent variable is an empirical measure of the accuracy of a village's aggregate information
and when it s the simulation outcome. Finally, we consider a real-world application to community
based targeting, where villagers chose which households ghould receive an, anti-poverty prograrm,
and show that networks with better diffusive properties (as predicted by our model) differentially
benefit from community based targeting policies.
JEL Classification Codes: D83, D&5
Keywords: Networks, Diffusion of information, Targeting, Development

Date: August 2012,

We thank Ritwik Sarkar, Prani Sastione, Ririn Purnamasari, Hendratno Tuhimen, Matthew Wai-Pol, and Chaeruddin
Kodir for outstanding research assistance and thank Mitra Samyn, SurveyMeter the Indonesian Central Bureau of
Statistics for their cooperation implementing the project. Most of all we thank Lina Marliani for her exceptional
work leading the fleld implementation teams. Funding for this project came from a World Bank — Royal Netherlands
Embassy trust fund. All views expressed are those of the authors, and do not necessaTily reflect the views of the World
Bank. the Royal Netherlands Embessy, Mitra Samya, SurveyMeter or the Indonesian Central Bureau of Statistics.
Chandrasekhar is grateful for support from the National Seience Foundation GRFP. We thank Matthew Elliott, Ben
Golub, Matthew O. Jackson, Chris Udry, participants-at the Calvé- Armengol Workshop and NEUDC 2010 for helpful
comments. All errors are our own. '

*World Bank. Email: velatas@worldbank.org,

tMassachusetts Institute of Technology, Department of Economica. Email: banerjee@mit.edu.

{Microsoft Research New England. Email: arc@microsoft.com.

*Harvard University, Kennedy School of Government. Email: rema, _hanna@ksg. harvard.edu.

Massachusetts Institute of Technology, Department of Economies. Email: bolken@mit.edu.
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Processing Power Limits Social Group Size: Computational Evidence for the Social
Brain Hypothesis
T. Dévid-Barrett'” and R.1M. Dunbar®

! Dept of Economics, Birkbeck College, University of London
* Dept of Experimental Psychology, University of Oxford

The social brain hypothesis"® was originally proposed as an explanation for the
evolution of large brains in primates, suggesting that cognitive abilities limited the size of
social group that a species could maintain, and that this imposed limits on the size of human
communities’. Although there is now considerable neuroanatomical evidence to support the
social brain hypothesis in both primates® and humans**?, the claim that communication
competences determined by underlying cognitive abilities might limit the size of social
communities remains untested. Here we present the first mathematical formulation and
computational evidence to support for this hypothesis.

We assume a group of 7 agents that face a coordination problem which requires
behavioural synchrony. We use synchronisation on a dial to capture this problem, a simple
but widely used"™* device. Each agent is first assigned an initial information value, a vector
between 0 and 360 degrees. One of these vectors is defined as the ‘true information® and is the
property of just one agent, while all the other agents are assigned a randomly distributed
value. The agents are arranged in a random r-node network in which each agent is linked to k
others. Synchronisation takes place via a set of random dyadic meetings, in which the agents
exchange their information, and then each of them calculates a weighted average of three bits
of information: her original information, the partner’s information, and the information the
partner received in his previous meeting. These meetings are repeated until, on average, each
agent has taken part in 7meetings. At this point, the average distance between the agents’
individual information and the ‘true information’ is:

d(nw.0)= - 3lor, -]

where w and @y are weight matrices for the weights the agent uses for the partners’ and the
third party information respectively, and ¢, is the information held by agent i at the end of
the synchronisation episode, and ¢y, is the ‘true information’.

Agents aretrying to get as close to the ‘tme information” as possible by estimating an
optimal set of weights using a memory of past information exchanges and a simple least
squares optimisation function. The agents have three possible ways of estimating the optimal
weights. Model F1: agents ignore both the third party information and the differences among
their partners. Model F2: agents ignore third party information, but recognise the differences
among their partners. Model F3: agents use both types of information. In calculating the
weights, we varied the size of memory sample that the agents could use in their optimisation.

We used the processor time associated with each optimisation act as an index of the cognitive
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demand of a strategy, and use this as a proxy for the amount of brain tissue needed in
managing a strategy. This allowed us-to introduce an implicit distance function:
6(F,n,c)iu = d(rz,w,m)luc

where € is the measured processor time, F is the index of the method used by the agents, w
and @ are the ‘optimal” weight matrices as estimated by the agents.

We assume that there is a threshold of synchronization efficiency, which has to be
reached for the group to be in sufficient behavioural synchrony to be able to act as one. Then
the largest group that can be in synchrony is:

n*(F,g), , =maxn st 6(F,n,E)|f’k <A
where 4 is the synchrony threshold. _
Our simulations show that the maximum group size increases as calculation capacity

increases for all the three models (Fig. 1), and that for both models F=2 and 3 there is a ¢*(F)
such that n*(F—l,c) > n*(F,-c) fore<c* and n*(F—l,c) < n*(F,c_) forc>c*.

kA
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w12
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Fig. 1. Limiting values far social group size n* as a function of the processor time costs ‘€ required to achieve synchrony in
an ecolagical objective, for three different cognitive sirategies in an agent hased model with a structured network, P=1;
agents rely only on cutrent information about agents they interact with; F=2: agents take notice of individuat differences in
the quality of information other agents offer; F=3: ngents take note of individua) differerices between other agents and rely on
third party information abovt each other received from other-agents. Increasing caleulation. capa city allows larger groups in
each of the three strategics for evaluating the quality of potential colfaborators. However, each sfrategy has an upper limit
{glass cejling), and if groups need larger grovp size they have to switch to more sophisticated methods of information
acquisition and that necessitates an increase in the compntational costs (i.e. brain size). (Parameters used: k=4, =20, A=11.
The results are robust to these parameters.)

Note that the more complex strategies are highly disadvantageous when group size is
small, and the more complex the strategy the more disadvantageous it is. Thus, the evolution
of communicative and cognitive complexity is explicitly dependent on an ecological demand
for large social groups. It is only when there is a need for large groﬁps that the selection
pressure will be sufficient to warrant the costs involved.

Our analysis provides direct support for both the social brain hypothesis’ and the
social (or communicative) complexity hypothesis' by demonstrating that greater information
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processing demands are reflected in greater cogriitive (computational) costs, but that bringing

these on stream allows organisms to significantly increase social group size. If size matters

(large groups offer greater protection against predators™ or are more efficient for foraging'”)

or win more territorial fights''®), then there will b selection pressure to pay these costs. But,

the significant finding is that these costs are considerable, and, when 'optimal group size is

small, make the costs prohibitive. In these circumstances, simpler cognitive strategies are

more profitable. Broadly speaking, this is what we see in the natural world,
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Abstract

With the in¢reasing availability of large-scale datasets that simultaneously capture hu-
man movements and social interactions, advances in human mobility and spatial net-
works have rapidly proliferated during the past years, impacting in a meaningful fashion
a wide range of areas, from epidemic prevention and emergency response to urban plan-
ning and traffic forecasting. As human mobility and spatial networks have developed
in parallel, being pursued as separate lines of inquiry, we Iack any known relationships
between the guantities explored by them, despite the fact that thejr-oﬂen study the same
systems and datasets. Here, by exploiting three different cell phone datasets, we find a
set of scaling relationships, mediated by a universal flux distribution, that link the quan-
tities characterizing hﬁman mobility and spatial networks, showing that the widely stud-
fed scaling laws uncovered in the two areas represent two facets of the same underlying

phenomena,
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LOCAL COMPUTATION OF NETWORK CENTRALITY

By CurISTINA LEE  AsUuMaN OZDAGLAR DEVAVRAT SHap*

LIDS, Dept. of EECS
Massachusetts Institute of Technology

Network. centrality is a graph-based function that assigns scores to
the nodes of a network. Many network centralities can be represented
in termes of stationary distributions of random walks on the under-
Iying graph — PageRank is an example of such a network centrality.
The clasgical power-iteration method provides a simple iterative algo-
rithm for computing such centralities. However, each fteration of this
method requires global network-wide computation which becomes ex-
tremely challenging to perform over large graphs such as World Wide
Web. In this paper, we propose a finitely terminated algorithm for
approximately computing network centrality of & node which requires
information about a local neighborhood of that node. We, provide per-
formance bounds on our estimates which highlight the dependence
on the termination time and network properties, Qur bounds yield
tighter estimates for nodes with high centrality. Our analysis relies on
the classical thecry of positive-recurrence for countable state space
Markov chain; as a byprodnct it provides meaningful implications
towards the miving time of such Markov chaing which could be of
independent interest.

Background. Networks have become ubiquitous representations for captur-
ing interactions and relationships between entities across disciplines: social
interactions between individuals, interdependence between financial institu-
tions, hyper-link structure between web-pages of more genérally corrélations
between distinct events. Many decision problems over networks rely on in-
formation about the importance of different nodes as quantified by network
centrality measures. The celebrated PageRank, which is commonly used in
Internet search algorithms, and the Bonacich centrality and eigencentrality
measures, enicountered in the analysis of soclal network are just two exam-
ples. Network centralities are often represented as stationary distributions
of properly designed random walks (or Markov chains) over the network
graph, a representation that is also useful for computation. Two classical ap-
proaches for computing network centralities are the power-iteration method,
which involves iterative multiplication of the transition probability matrix
of the random walk, and the Monte Carlo methods, which involve sampling

*Email addresses of authors are {celee, asuman, devavrat}Qmit.edu.
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states from a long random walk over the entire state space. The algorithm
can take possibly unbounded time depending on the mixing properties of
the underlying network. Both of these methods effectively require global in-
formation about the network, which would'be prohibitive for large networks.

In this paper, we develop a truncated Monte Carlo type method, which
ensures finite termination time and exploits local information. We provide
performance guarantees as a function of the truncation time and network
properties. Qur analysis relies on the classical theory of positive-recurrence
for countable state space Markov chains and uses a Lyapunov function over
the state space with a negative drift outside a finite set of states to be able
to bound the impact of truncation on the stationary probabilities.

Qur work is most related to. Monte Carlo methods for computing PageR-
ank vector (see Jeh-Widom [4], Fogaras et al 3], Avrachenkov et al [1] which
showed that PageRank is given by the distribution over the end nodes of a
random walk with geometric length and Bahmani et al [2] which addressed
how to incrementally update the PageRank vector for dynamically evolv-
ing graphs). The analyses in these papers rely on the specific structure of
the random walk describing the PageRank, which involves at each step uni-
formly jumping to any other node with constant probability € > 0 . This
implies that the transition probability matrix P of the random walk can
be decomposed as P = (1 — €)@ + fvllT. This decomposition is used to
show that sampling with geometric length random walks obtains samples
from the exact distribution. Therefore, concentration results follow natu-
rally from Chernoff bounds for binomial distributions. In contrast, in this
paper we focus on general network centralities, which can be represented as
the stationary distribution of an irreducible, aperiodic and positive recurrent
Markov chain and present an algorithm with performance guarantees.

Model and Notation. We are given a network represented by a graph
G = (I, E), where X is the (possibly countably infinite) set of nodes and E is
the set of edges. Qur goal is to compute a network centrality vector, which is
given by the stationary distribution of an irreducible, aperiodic and positive-
recurrent Markov chain on & with transition matrix P: T x & — [0,1]. We
provide a simple finitely terminated local algorithm (defined below) that
provides estimates for the stationary probabilities. We present performance
bounds for our estimates as a function of the termination time and net-
work properties. Our bounds are tighter for nodes with higher stationary
" probability. '

Algorithm, To estimate the stationary probability 7; of node i € I, we
sample N independent paths of the Markov chain starting in state ¢ for up
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to 0 steps. Here N and 8 are parameters of the algorithm (which determine
the amount of local information used by the algorithm). Each of the sample-
path of the Markov chain is either stopped if the Markov chain revisits the
node ¢ within first § steps or it has taken 8 steps without revisiting starting
node i. Let ¢ be the number of steps after which Markov chain was stopped
in the kth run, 1 £ & < N. Then the estimate of the stationary probabﬂit}
of node 4 is given by :

N N 1
(1) = SN T A
Zk 1tk T

Observe that the algorithm only needs to keep track of the locatmn of the
random walk and the number of steps taken, Therefore it can he distributed
and run in parallel. In addition, since each sample path is only at-most
length 8, the algorithm may not need-to store the entire network.

Main result. We start by recalling a sufficient condition for positive recur-
rent Markov chains.

Sufficient condition for positive-recurrence. An irreducible, aperiodic Markov
chain X;,¢ >0, on countable state space I is po:ﬂtzve recurrent if there ex-
ists a Lyapunov function V : £ — R, a finite set B C ¥ and constants
Vimaz, ¥ > 0 such that

L [V(y) =~ V(#)| £ tinao for all z,y € T with P(X; 4 = y|X; = 2) > 0,
2. E[V(Xp1) = VX)X, = z] < —v,.Y 2 € B :

Due to the finiteness of the set B, the negative drift over B¢ and bounded
increment in the Lyapunov function V, it follows that the return time to a
node ¢ € B is exponentially concentrated, which is formally stated next.

Proposition 1 For any i € B anid for all k € Z, let T, be return time of
Markov chain t6 node 1 starting from Xy =14. Then, -
k

(2) P(Ti> Rn(2)+k) <e ™, where E_QO(HM_;;;;(&,;E)Q).

Here, the parameter H; = max;cpE[T5|Xy = j] where Tp is the return
time to ¢ for the chain watched only on the subset B.

We can use the preceding proposition to obtain for all @,
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where ¢, ¢ are fired values that depend on the graph properties, the chosen
node 1, and A.

This theorem highlights the two main sources of error in the algorithm’s
estimation. The first source of error, g, is a result of the trunction. It is de-
terministic and depends on the chosen threshold 4 and the graph and target
node properties Z"q‘,ﬁ and H;. The second source of error ¢ is the sampling
error, a probabilistic quantity. The parameter ¢ and ¢ which dictate rates
of convergence also depend on the graph properties and the chosen target
node.

Simulations. We tested our algorithm on two types of markov chains. The
first example uses a M/M/1 queue, where

p = P(departure occurs before an arrival)

The second example uses the PageRank markov chain over & randomly gen-
erated graph. The random graph is generated with the configuration model,
where the degree distribution is chosen according to the power law with
parameter o = 1.5.

()= cd™

The plot shows the stationary probability of the target node and the error
of the estimate. As expected, for nodes with high stationary distribution as
compared to é, the algorithm performs well with low error.
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Social Learning and Network Uncertainty
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EXTENDED ABSTRACT

We consider the perfect Bayesian equilibria of a model of social learning in networks
where agents have imperfect knowledge of the social network topology. Each agent receives
a signal about an underlying state of the world, observes the actions of her neighbors and
subsequently chooses an action herself. The topology of the social network is drawn from
a commonly known distribution, but each agent only observes her own neighborhood. We
characterize properties of social networks that lead to or preclude the successful aggregation
of information in society.

Our model is a generalization of that introduced by Acemoglu et al. [2011]. While
Acemoglu et al. [2011] assume that neighborhoods of different individuals are realized in-
dependently from one another, we allow for arbitrary distributions over the space of social
networks. This extension allows us to capture real-world network phenomena such as clus-
tering and assortativity and to consider the performance of social learning in widely used
models of social networks such as preferential attachment models. ‘

When a network topology exhibits these phenomena, agents in the network may disagree
over who is well-informed or well-connected, and we say that the topology features network
uncertainty. Network uncertainty forces us to reevaluate our understanding of social learn-
ing dynamics and whether networks successfully aggregate dispersed information. According
to the last two decades of economics scholarship, the key inefficiency in the social learning
process is the phenomenon of herding, as first described by Banerjee [1992] and Bikhchan-
dani et al. [1992], While our model still captures herding behavior, we find that network
uncertainty can cause more significant failures of information aggregation to occur.

We argue that previous papers have set the bar too high for social learning. The tradi-
tional metric for successful information aggregation is whether, as society grows large, later
agents approach certainty about the underlying state of the world. When this occurs, we
say that learning is absolutely successful. Prior work has shown that absolute success can be
difficult to achieve when agents only observe the discrete actions taken by their neighbors,
instead of actual signals or beliefs. However, in many networks, agents benefit substantially
from observing their peers without approaching full knowledge of the state of the world.

*Stern School of Business, New York University — {ilobel, esadler }@stern.nyu.edu
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'To better understand the extent to which learning occurs, we introduce a second metric for
social learning motivated by the notion of an expert—an individual with an exceptionally
strong private signal. We say that learning is successful if all agents perform at least as
well as an expert in the limit as society grows. We study conditions leading to both success
and absolute success. If neither metric is attained, we say that social learning has failed to
aggregate information. .

One reason prior literature has focused on absolute success, rather than success, is that
the complete network studied in early papers (e.g. Banerjee [1992], Bikhchandani et al.
(1992], and Smith and Sorensen [2000]) always successfully aggregates dispersed informa-
tion. In fact, we show that herding can only occur once social learning has been successful.
At worst, herding prevents absolute success. More recent papers have studied other deter-
ministic network topologies (Celen and Kariv [2004]) as well as stochastic topologies where
agents have independently drawn neighborhoods (Banerjee and Fudenberg [2004], Smith and
Sorensen [2008], Acemoglu et al. [2011]). One may plausibly conjecture that many such net-
works fall to aggregate information, but we show this is essentially false. In the absence of
network uncertainty, learning is always successful so long as the network features expanding
observations. This is a mild condition introduced by Acemoglu et al. [2011] that serves only
to eliminate insufficiently connected networks.

Without network uncertainty, learning fails only if the network is too disconnected, but -
with network uncertainty, we find that learning can fail via a multitude of complex mecha-
nisms. Learning might fail because agents cannot identify an information path even though
it exists. Learning may also fail because agents are either underconfident or overconfident in
their neighbors, so they incorrectly weigh their private beliefs against their social beliefs. Fi-
nally, learning can fail because network uncertainty creates correlations between the actions
of different neighbors that render them uninformative. These modes of failure by no means
constitute an exhaustive list, but we have catalogued several of the mechanisms through
which network uncertainty can disrupt the learning process.

Our main positive result provides sufficient conditions for successful information aggre-
gation. We introduce the notion of a neighbor choice function—a rule that selects one
especially trustworthy person from each agent’s neighborhood. Given a network topology
and a neighbor choice function for each agent, we obtain a trusted network topology. This
topology represents a network where each agent considers at most one neighbor’s action
when formulating a decision, discarding the information provided by all other neighbors. We
show that successful social learning occurs if there exists a trusted network topology that is
sufficiently connected and has low (belief) distortion. Low distortion provides the key new
constraint: if the act of observing another agent does not excessively affect this person’s
probability of being correct, then the network has low distortion. We also demonstrate that
in special cases these conditions are both necessary and sufficient for successful learning.

These conditions grent us substantial freedom to select neighbor choice functions, and
via appropriate selection we can use this result to demonstrate successful information ag-
gregation in many types of networks. For instance, any network with long deterministic
information paths automatically satisfies these conditions. Since low belief distortion is

12



Dynamics and Networks

often challenging to verify directly in a network, we also introduce the notion of network
distortion. Network distortion captures how being observed by someone else affects the com-
position of an agent’s neighborhood. We show that network distortion provides an upper
bound on belief distortion; thus, the existence of a trusted network topology that is suffi-
ciently connected and has low network distortion leads to successful learning. Models based
on preferential attachment—a popular generative model used to simulate real-world social
networks—satisfy these properties, thereby leading to successful information aggregation.
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INTERMEDIATION AND EXCLUSIVE REPRESENTATION IN FINANCIAL
NETWORKS

ITAY P. FAINMESSER

Extended abstract. This paper develops a theory of financial intermediation based on the
resolution of incentives problems via repeated ‘interactions. Consider a potehtia;l lender (e.g.
investor) and a borrower (e.g. entrepreneur) who needs to raise capital for a risky project.
Even if both parties know the expected returns of the project and observe its outcome, limited
liability combined with lack of verifiability of the realization of the risky investment leave open
the possibility of strategic default. If the frequency with which the lender has liquidity (when
the borrower needs liquidity) is low, then strategic default by the borrower cannot be deterred
by a threat of losing access to future funds from the lender. However, a financial intermediary
(e.g. an investment bank) who exclusively represents a large pool of lenders in their transactions
with a borrower can still enforce repayment by the borrower. The intermediary can do that by
threatening to eliminate the borrower’s access to future funds from many lenders.

To be specific, we show that if interactions hetween any lender and borrower are infrequent
and if market participants have incomplete knowledge of the patterns of interactions in the mar-
ket, then all investments must be intermediated. Moreover, each intermediary must exciusively
represent many lenders in their interactions with a given borrower, so that she can “punish” the
borrower severely for any strategic default by eliminating the borrower’s access to many future
loans. To this end, we develop a model of financial networks that are shaped by exogenous
forces as well as by lenders’ decisions and new tools to study the ability of market participants
to learn about the structure of the financial network. We then characterize networks that are
robust — networks that can be sustained in equilibrium given (almost) any belief that is consis-
tent with agents’ knowledge of the network structure. Our characterization sheds light on the
complementarity and substitutability of self-finance clauses, the use of collateral, and interme-
diation; and suggests also that the riskiest assets will be traded by intermediaries without full
collatcral. The effect of macroeconomic conditions and the presence of credit bureaus on the
patterns of intermediation are also studied.

Clearly, we are not the first to study game theoretic foundations for the enforcement of infor-
mal contracts. The literature on comumunity enforcement offers two enforcement mechanisms to
explain the prevalence of informal contracts in the presence of incentives problems. One mecha-
nism is ostrecism. Ostracizing a borrower requires coordination. In some markets coordination
is achieved by tight social groups, i.e. family or an ethnic group. When a market is not domi-
nated by social groups, coordination requires common observations and common knowledge of

Fainmesser: Economics Department, Brown University, Providence. RI  02006. E-mail:
ttay_ fainmesser@brown. edu.
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the patterns of interactions hetween agents. A sccond mechanism suggested in the literature is
contagion — any agent who observes a default reacts by defaulting (if a borrower) or by avoiding
the provision of liquidity (if lender), independent of ibe identity of their trading partner. Con-
tagion is hard to motivate in large markets, and réquires implicit coordination between agents
in order to provide the incentives to spread ‘bad behavior’ to the entire population.

In this paper we propose a third mechanism — intermediation. If each of a group of lenders
agrees to invest with a given borrower only via a given intermediary, the intermediary can single-
handedly ‘cut off” a defaulting borrower’s access to liquidity from a large group of lenders. Qur
analysis suggests that well positioned intermediavies can enforce repayment in environments in
which ostracism and contagion cannot.

A novel feature of our model is that agents are not assumed to observe the network structure
directly; agents observe their own financial interactions, and their knowledge of the network is
derived as an upper bound on what they would be able to learn about the network structure
based on their observations in many such interactions. The idea that agents do not observe
the network structure directly, but, rather infer the network structure from their observations
during their own interactions is reasonable given that the network is not a physical object, but
rather a collection of relationships that generate the activity in the economy.

Given that agents receive information only on parts of the network that affect their own
financial interactions, some forms of community enforcement are infeasible. If a borrower b
strategically defaults, his link with the lender or intermediary, say &, who provided him with
the liquidity is lost. However, for any additional intermediary or lender, say 4, to disconnect
her link to the borrower, two conditions need be fulfilled: {1] 7 observes the default (or the
elimination of the link between k and b); and [2] given her observations and beliefs, 7 has the
incentives to eliminate her link to b rather then “pretend” not to have observed the default (or
the elimination of the link between k and b). For example, 7 may prefer to “cover-up” b’s default
if j believes that other lenders or intermediaries did not observe the default (or the elimination
of the link between k and b) and that b has sufficient incentives not to default on 7 as long as
no additional links are eliminated.

The main result of the paper offers a complete characterization of the set of networks that
are robust — networks that can be sustained in pure strategy perfect Bayesian equilibria of the
infinitely repeated game given any belief from a large set of beliefs that we consider. We show
that there exists a mapping from the parameters of the model to a positive integer m such
that in robust networks any active intermediary is an m-local monopoly — for every borrower
who the intermediary is connected to, she is also connected to at least m lenders who are not
connected to the borrower in any other way, either directly or via another intermediary. That
is, any intermediary exclusively represents at least m lenders in transactions with any borrower
that she is connected to. Figure 0.1 demonstrates the notion of local monopolism.

We also show that if the parameters of the model are such that 7 > 1, then in all robust
networks all investments are intermediated. This explains the presence of intermediaries even
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FIGURE 0.1. Local monopolism. Intermediary 41 is a 1-local monopoly, iz is k-local
monopoly for any &k < 2, and 43 is k-local monopoly for any & < 3.

in markets in which there is no exogenous cost advantage to intermediation. Our result also
highlights that the important factor is not the absolute size of an intermediary, or the overall
number of investments that she intermediates, but rather the exclusivity over a sufficient number
of investment paths. Such exclusivity can be achieved by a large intermediary, but it can also be
achieved by an intermediary who specializes and focuses on a small (but not too small) number
of borrowers and lenders that cannot transact otherwise. E.g., an intermediary can focus on
local businesses, or provide a connection between otherwise disconnected communities.

By relating m to the parameters of the model, we are able to show that the minimal level of
monopoly power that an intermediary is required to hold (as captured by m) decreases in the
frequency of arrival of investment opportunities and the expected return on investment, and
increases in the borrowers discount rate and in the return on capital demanded by lenders.

From a macroeconomic perspective, the model predicts that in times of economic booms (high
frequency of arrival of investment opportunities and high expected returns on investments) there
is room for a large number of intermediaries and more competitive markets in which no single
intermediary has significant market power (as captured by m). On the other hand, in times of
economic downturns, especially ones that are triggered by liquidity crunclies, the model predicts
a smaller number of intermediaries, each with significant market power.

We also find that requiring that a borrower self-finance a positive fraction of the investment
opportunity reduces the monopoly power required by intermediarics in order to enforce repay-
ment. and that thie same is true for partial collateral and for the presence of bankruptcy laws.
On the other hand, we find that introducing the possibility of pledging full collateral increases
the monopoly power that intermediaries are required to have in order to enforce repayment
of uncollateralized investments. Therefore, if the cost of pledging full collateral is sufficiently
low. the market may revert to simple debt contracts even when equity-like contracts are more
efficient. In particular, full collateral contracts are likelv to undermine the role of intermediaries
in markets for less risky assets, and intermediaries are likely to continue trading the riskiest
assets without collateral. .

Finally, we show that central credit information agencies (a generalized version of credit
rating agencies) may relax the requirement of local monopolism. but do not eliminate the need
for intermediaries.
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Competitive Marketing Strategies over Social Networks

Kostas Bimpikis * Asuman Ozdaglar T Ercan Yildiz *

It is w1dely accepted that word-of-mouth plays a central role in the propagation of brand or
product information, and, thus, it is a first order consideration in the design and implementation of
a marketing strategy. Moreover, marketers, nowadays, have access to and can take advantage of vast
amounts of data on the pattern and 1nten91ty of social interactions between consumers. The advent of
the Internet as a prominent communication and advertising platform has enabled firms to implement
targeted marketing campaigns and direct their efforts to certain subsets of the population. The natural
question that arises in this setting is whether a firm can use the wealth of available information along
with the targeting technologies to increase the awareness about its products. The recent acquisitions
of Buddy Media, Vitrue, and Wildfire Interactive by Salesforce, Oracle, and Googie respectively point
to the indisputable fact that social media marketing emerges as a viable alternative to traditional
advertising and tech giants are strwmg to obtain a competitive advantage in the new landscape.

The focus in this paper is to prescrlbe the best way a firm can explolt word-of-mouth and its
knowledge over the social nétwork structure of consumers when devising a targeted marketing cam-
paign. At the core of the model lies an information externality: information obtained by an agent in
the network can be passed along to her peer group and, thus, word of mouth communication among
agents may amplify the effect of a firm’s marketing efforts. As a consequence, an optimal targeting
strategy may involve allocating disproportionate fraction of the advertising budget to certain agents
that play an influential role in the word of mouth process expecting that they will pass the relevant
information to the rest. Indeed, strategies of similar flavor have been applied in practice, however in
an ad hoc and heuristic way.! Qur goal is to provide a systematic characterization of optimal targeting
strategies and identify qualitative insights that lead to their success.

We study a dynamlc model of information exchange among agents embedded in a given social
network. Agents communicate with their peers over time and obtain information about a number of
products. Specifically, when two egents communicate, then one suggests a product to the other in
proportion to her belief that the product is better tha.n the competition. Individual beliefs evolve
over time incorporating information that agents obtain. Finally, firms can, influence this process by
targeting advert1s1ng funds to specific individuals, thus, making them more prone to pass information
regarding their product. As a motivating example consider a group of consumers acquiring infor-
mation about competing firms in & new consumer market (e.g., smartphones, tablets), There is a
priorl uncertainty about. the relative quahty of the products and firms can assist congumers through

*Graduate School of Business, Stanford University,

'Dept. of Electrical Engineering and Computer Science, Massachusetts Instisute of Technology.

FMuleiChannel Interactions Research and Development, Group, Accenture Technology Labs.

Hor example, Klout {www.ldout. com), a San Francigeo-based company, prevides social media analytics to measure
a user’s influence across his or her social network, ‘The service scrapes social network data and assigns individuels a
“Klout” score, which presumably reflects their influence. It, then, connects businesses with individuals of high score with

the intention of influencing the latter to spread good publicity for the former in exchange for free merchandise and other
perks.

17



Dynamics and Networksa

informative advertising.

We are interested in the limiting behavior of this dynamical system and how it relates to the
underlying network structure and the marketing strategies of the competing firms. First, we show
that the limiting behavior of the system is- well defined, as the beliefs of ‘agents converge to; a fixed
vector. Next, we provide a sharp characterization of the average belief at the limit as a function of the
underlying network structure and the advertising efforts of the firms. It turns out that the average
limiting belief is equal to a weighted sum of the advertising funds that firms allocate to individuals,
where the weights are given by a novel notion of centrality of the agents in the underlying network
structure. .

Our main objective is to devise optimal marketing strategies for firms over the existing social
network structure. Armed with a complete characterization of the limiting behavior of the dynamical
system that represents the information exchange process among agents, we proceed to define the
following optimization problem for a firm: given the underlying network structure and the marketing
strategies of the competing firms, what is the best allocation of advertising funds to individuals, so
as the firm maximizes the expected average belief about its product over the population of agents.
Interestingly, we provide a closed-form expression for the optlmai budget allocation to an agent: a
firm should optimally spend advertising funds to an individual in proportion to the latter’s centrality
in the network. As a corollary of this characterllzatlon, we obtain the following 111tu1t1ve result: if the
network structure is complete, Le., the level of interaction between any pair of agents is the same, then
targeting does not offer any competitive advantage and it is best for the firm to allocate its advertising
budget uniformly over the population of agents.

In the second part of the paper, we model the competition between two firms that offer substitutable
products as a two-stage game over the network of agents. In particular, in the first stage, firms
simultaneously choose their marketing strategies, i.e., how to allocate their advertising budgets over
the population of agents. Then, in the second stage, agents obtain information both from their peers
and the firms over time until their beliefs about the relative quality of the products converge to
a limiting vector. We are interested in characterizing the equlhbrlum strategies for the firms and
derive qualitative insights for the relation of the network structure with the competition between
them. Specifically, firms compete the fiercest for agents that exhibit high centrality and allocate
a disproportionate fraction of their budgets on them. We provide conditions on the dynamics of
the information exchange process and the network structure that lead to asymmetric allocations at
equilibrium: the two firms target different sets of consumers and effectlvely divide the markets into
submarkets, where they act ag local monopolies,

As a way of further illustrating the effectiveness of targeting technologies, we compare the proﬁts
of a firm in the following two settings: first, when the firm has complete knowledge over the social
network structure and can fully exploit it by targetmg its edvertlsmg efforts and, second, when the
firm simply allocates its advertising budget uniformly over the entire population of agents. We provide
a characterization of the difference in the limiting average belief for the quality of the product in the
two settlngs as a function of the underlying network structure and highlight the relation of the success
of a targeted marketlng strategy with the level of heterogenelty in the network interactions among
agents: the miore homogeneous these interactions are, the less effective a targeted marketing strategy
is compared to one that is agnostic of the underlying network. To further build intuition, the two
extremes are, on the one hand, the complete network, where an agent interacts with all other a,gents in
the same way, and the star network, where the only interactions present are between the “star” node
and the rest of the agents. Inthe former, targetmg does riot offer any advantage compared to ‘uniform
advertising, whereas in the latter the difference in the limiting behavior of the agents is maximized,
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Nine Facts, Three Parameters and One Theory:
A Precise Analytical Model for the Dynamics of Industry Location Networks

Ravi Charan and Cesar A. Hidalgo
Macro Connections, The MIT Media Lab
rcharan@mit.edu; hidalgo@mit-edu

INTRODUCTION:

Understanding the process by which countries and locations diversify their
industrial structures has been historically difficult. In fact, many theories have been
constructed to explain the process by which industrial structures evolve.

On the one hand, there are the approaches followed by classical theories of
structural transformation and development, where the focus is on the ability of a country to
move its economy away from an aggregate sector, such as “agriculture”, and into another,
such as “manufacturing”. On the other hand, we have stylized formal models of location,
like those in the new economic geography of Krugman, Fujita and Venables. Moreover, we
have empirical approaches, like as those followed by Glaeser, Boschma, Frenken and
Saviotti, where the focus has been on measuring the diﬂ’erent types of externalities that
affect the location of an industry.

All of these approaches, however, have two thlngs in common. On the one hand, they
assume that industries require the existence. of a set of factors, capabilities or
characteristics. These could range from the distance between an industry and private and
public inputs, such as workers, resources and institutions, to the availability of a local
market where the industry can sell its specific output. On the other hand, these theories
assume that there is something special about each place, in the sense that some of these
characteristics are presents in some place but not others.

In this paper we present an analytical model that uses networks to formalize this
two observations and use empirical data to show that the model can reproduce both, the
structure and the dynamics of the networks connecting countries to products, and
connecting industries to locations. We find the evidence in favor of the model to be strong,
since we show that the model can reproduce the dynamic patterns observed in the data
after having calibrated all the fitting parameters in the cross section. This shows that the
model makes accurate out of sample predictions, with no fitting parameters, regarding the
dynamics of industry location networks.

MODEL DESCRIPTION:

Our model is based on three bipartite networks. One connecting locations (c) to the

- characteristics (@) that are present in them (C), another connecting industries (p) to the
characteristics (a) they require (Ppq), and a third one, connecting each location ¢ to the
industries p present in it (M.,}. We assume that industry p will be present at location ¢
(M;=1) only when the characteristics required by the industry are a subset of those
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present at the location:: We solve a particular case of this model in which locations have
characteristics with probability r, industries require characteristics with probability g, and
there are N, characteristics in the world.

RESULTS

To compare the data and the model we calculate a series of observables of M., -the
adjacency matrix connecting industries to locations- using data connecting both, countries
to the products they export (BACI}, and cities to the industries present in them (U.S. M.S.A.
Census). Here, we distinguish between static, or cross sectional observables, and dynamic
observables. The latter of these observables involve changes in M., over time.

We show that based on the aforementioned assumptions it is possible.to derive
theoretical predictions about (i} the average diversity of locations, (ii) the average ubiquity
of industries, (iii} the fill of Mg, (iv) the average ubiquity of the industries present at a
location and (v) the average diversity of the locations where an industry is present. We
show that the latter of these three can be used to calibrate all of the model parameters (r.q
and Nq).

Also, we derive theoretical predictions for four dynamic observables. These connect
the diversity of a location, and the average ubiquity of its industries in the present, with the
ubiquity of a location’s new industries (vi - vii), and the average diversity of the locations
where a location’s new industries used to be present (viii - ix). We show that the model
predicts that three of these relationships will follow a power, and one of them to be linear,
and find these predictions to hold empirically. Moreover, we find that the predicted
exponents of the power-laws are functions only of the parameters calibrated in the cross
sections (r, g and Ni}. We compare the empirically observed exponents with those
predicted with the theory and find these to agree within measurement error. These shows
that the model makes predictions for the dynamic properties of the network connecting
industries to locations that are able to reproduce the network properties in absence of
fitting parameters.
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CONCLUSIONS

In this presentation we show that it is possible to construct a model that predicts
the structure and dynamics of the networks connecting industries to locations. We find that
the model connects with the theory with a great degree of precision, since it makes
predictions about non-trivial dynamics exponents using only parameters calibrated in the
cross-section. We take this as strong evidence in favor of the process of economic
development and diversification to be the result of a combinatorial, rather than

aggregation, process by which locations accumulate characteristics that were until now not
present in them.
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‘Overview: The importance of the ability to predict emer™
gence and evolution of trends in human comimunities and
social networks has been growing rapidly in the past few
years with the increased dominance of social media in our
everyday’s life. Whereas many works focus on detection of
anomalies in networks, there exist little theoretical work on
the prediction of the likelihood of anomalous network pat-
tems to globally spread and emerge into prominent “trends”.

In this work we present an analytic model for the so-
cial diffusion dynamics of spreading patterns in {(social) net-
works. Qur proposed model generalizes a known localin flu-
ence model, and is capable of predicting future trends based
on the analysis of past social interactions between the com-
munity’s members.

Contribution: Recently, a model for the local dynamics
of social influence was developed (Pan, Aharony, and Pent-
land 2011), where the probability that a certain behavior
would “migrate” from one user to her friends was shown
to be well approximate by the f(t) = 1 — e~ (11428 where
{1, & are derived from past activity of the social network.
We have generalized this model, giving analytically prov-
able lower and upper bounds for the probabilities that crtain
behaviors would evolve into global network trends,

Validation: 'We have validated our model using real-world
date from two comprehensive social datasets. The first is the
Friends and Family experiment (Aharony et al. 2011), held
in MIT for over a year, where the complete activity of 140
users was analyzed, including data concerning their calls,
SMS, MMS, GPS location and social media activities. The
second dataset contains the complete financial transactions

' of over 2.5 million members of the eToro community — the
world’s largest “social trading” platform, allowing users to
trade in carrency, commodities and indices by selectively
copying trading activities of prominent traders,

Model: One of the main difficulties of trends-prediction
sterns from the fact that the first spreading phase of “soon to
be global trends” demonstrates significant similarity to other
types of anomalous network patterns. In other words, given
several observed anomalies in a social network, it is very

panwei @media. mit.edu
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hard to prédict which of thetr would result in a wide-spread
trend and which will quickly dissolve into oblivien.

We model the community, ot social network, as a graph
G, that is comprised of V {the community’s members) and
F (social links among them). We use n = |V} to denote the
size of the network, in which we are interested in predicting
the future behavior of some observed anomalous pattern a.
Notice that ¢ can refer to a growing use of some new web
service such as Groupon, or alternatively a behavior such as
associating oneself with the “99% movement”.

Note that “exposures™ to frends are transitive. Namely, an
“exposing” user generates “exposure agents” that are trans-
mitted on the network’s social links to “exposed users”,
which in turn if “convineed”, can transmit thern onwards.
‘We hence model trends” exposure interactions as movements
of random walking agents in a network, assuming that very
user that was exposed to a trend a generates ;3 such agents,
on average (3 can be estimated using past observations).

We assume that our network is (or can be approximated
by) a scale free network Gi(n, ¢ v), namely, a network of
n users where the probability that user v has d neighbors
follows a power law : .

Pld) ~e-d7

We also define the following properties of the network
{given for the complete definition of Theorem 1. The Proof
of Theorem 1 is-omitted due to space considerations) :

Definition 1. Ler V., (t) denote the group of network mem-
bers that at time t advocate the behavior-associated with the
potenilal trénd a.

Definition 2. Let us denote by 8 = 0 the average “diffusion
factor” of a trend a. Numely, the average number of friends
a user who have been exposed to the frend will be talking
about the trend with (or exposing the trend in other ways).

Definition 3. Let Pa be defined as the probubility that two
arbitrary members of the network, w and v, have degrees
ratio of A or higher

Pa & Probldeg{u) > A - deg(v)]

Definition 4. We denore by o, and o_ the “high temporal
resistance” and “low temporal tesistance” of the network :

A,
Yt, YA, , and for o(A, t) £ g e
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1—Pa
a(A,t)
Definition 5. Let Procal— Adopt (@, 9, £, A¢) denote the prob-
ability that at time t-- A, the user v hod adopted trend e (for
some values of t and Ay). This probability may be different
Sor each user, and may depend on properties such as the net-
work's topology, past interactions between members, etc,

Definition 6. Ler Pr,c.: denote the expected value of the
local adoption probability throughout the network :

c+émin{1§d> 1—(1—

a'_émax{AZI

1-i§l7‘1) 1-Pa

1-—

Procat = E[Procai—adopt{a, 1, t, A
ucV

Definition 7. Ler us denote by Praeag{Qg, m, €) the
probability that at time t-+ A, the group ofnem)arz members
that advocate the trend o has at least € - n members (namely,
that V(1 + A = 2 n).

Definition 8, Let N, .(t) derote the number of friends of
user v that at time t are exposing v to the trend o (namely,
the number of friends of v that at time t have been exposed
t0 the frend o and are comeeying this information to v).

Thearem 1. For every Ay, |V, (t)], n, &, the probability that
at time t + Ay at least e portion of the network’s users ad-
vocate the trend g is :

erietn (1o | ya. -t
F(1-F)
S Pl"rend, (Ati %Va(t)! 5 E) S
T
e—s-n-fG’E;"m*‘ L 1—-& .V/H‘ €_P+
NETEER
where '
Popt+
. (At‘u’ﬁ + ngt___ )
- ~| == —Popt_ taE—
P.=e i ¢
and where ;
. - Ve (t
Pogpt .. 4 argmin (oncal * PTr‘cﬂd (At; I TE )[a&-))
P

. V,(t
Popt . = Argmax (PELo"zul ' PJ{'-'rend (At) l (;’( )I )E>>
3

and provided that po < Ay o and poy, > Ay - 0y,
and where £ denotes the nerwork’s adoption factor and £y
denotes the network’s influence factor :

1 W Wy, u
fo=ewTuwevs |ty = g% Detunes(TRH T
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Experimental results: The datasets were analyzed using
the model given in (Pan, Aharony, and Pentland 2011),
based on which we have experimentally calculated the val-
uesof 8,8, & and o_.

Figures 1 and 2 demonstrate the probabilistic lower bound
of Theorem 1 for trend emergence, as-a function of the over-
all penetration of the trend at the end of the time period,
under the assumption that the emerging trend was observed
in 5% of the population. In other words, for any given
“magnitude™ of trends, what is the probability that network
phenomena that are being advocated by 5% of the network,
would spread to this magnitude. Notice that although longer
spreading times slightly improve the penetration probabil-
ity, the “maximal outreach™ of trends (the maximal rate of
global adoption, with sufficient probability) is dominated by

the topology of the network.
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Figure 1: Trends spreading potential in the eToro network,
for various penetration rates. Initial seed group is defined as
5% of the population. Each curve represents a different time
period, from 2 weeks to 6 weeks.

o

=

o o
o,
=

%

k!

Peobability (lower boend}

Prohabifty fower bound)

&

g
R LTI Y- Y v
Trarts fital penairaton

@

0,175
Trestd's Yine! penetration

Figure 2: Trends spreading potential in the Friends and
Family network, for various penetration rates. Initial seed
group is defined as 5% of the population. Each curve repre-
sents a different time period, from 2 weeks to 5 weeks,

The upper bound of Theorem 1 can be used in two main
ways. First, is provides analytic estimation regarding the
success probability of various campaign goals, and can be
used as an “impossibility result” for detecting unrealistic
goals. This is illustrated in Figure 3, where the probabil-
ity of obtaining various levels of trend penetration are given,
as a function of the initial amount of resources (e.g. the size
of the inifia] seeding group). As the desired goal become
inereasingly more ambitious (namely, convincing a growing
number of users to adopt the trend), the success probability
sharply decreases, while maintaining a monotonous connec-
tion between the size of the initial seeding group. and the
success probability. Alternatively, multiplying the success
probability by the size of the initial seeding group, we obtain
the campaign’s “utilizarion function”, analytically predicting
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the marginal utilization of any increase in the resovrees al-
located to the campaign. This in twn can also be used for
calculating the optimal size of the seeders group {per any
penstration goal), as illustrated in in Figure 4, dernonstrat-
ing bow a change in the campaign goals can significantly
change the optimal campaign strategy. Figurs 4 is based on
real-world network data of the ¢Toro commiimity. Note how
the utilization function for a campaign intended to convince
30% of the community would be monotonous, while a cam-
paign intended to-convinee 50% of the community would be
a non-menotonous function, with a single global maximura,
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Figure 3: An illustration of Theorem. 1 using the ¢Tore net-
work. Upper bound of the campaign success probability for
three different goals {penetration of 10%, 20% and 30%) as
a function of the size of the initial seeding group.

References
Aharony, N.; Pan, W,; Ip, C.; Khayal, I; and Pentland; A.
2011. Social fiori: Investigating and shaping social mecha-
nisms in the real world, Pervasive and Mobile Computing.
Pan, W.; Aharony, N.; and Pentland, A. 2011. Composite
social network for predicting mobile apps installation. In

Proceedings of the 25th Conference on Artificial Intelligence
(AAAIT}, 821 - 827,

% o oty a6 BueEES.

26

enetration = 423%

T TR T T ey

:J\ Penetration = d6%

H“““‘*—ﬁ.‘

o Penetration = 44%
2]

) s
LG )

Th—

R R R B e

%
= % e

I f\\ Panelbiation = 4B% o Penetration = 50%
NG :
’ |
9] o |

LI R M M il T T N

TR TS TE TR TR T TR R M E S uac™
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ity multiplied by the size of the seeding group. Each graph
corresponds to a different campaign goal (defined by the re-

‘quired penetration rate) and shows the marginal utilization

of the resources (i.e. the seeders) as a function of the amount
of resources invested (i.e. number of seeders). Notice how a
monctonous utilization function for 20% suddenly gets dis-
torted as we approach 40% penetration goal. Severa] local
maxima appeai arcund 42% - 48%, and at 50% a new global
maximunm is settled, with a non-monotonous function.
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ABSTRACT

Recent studies on the diffusion of information in- social networks
have largely focused on models based on the influence of Tocal
friends. In this paper, we challenge this approach and revive carlier
theordes introduced by social scientists in the context of diffusion
of innovations to model user behavior. To this end, we stidy vari-
ous diffasion models in two different online social networks; Digg
and Twitter. We first evaluate the applicability of two represen-
tative local influence models and show that the behavior of most
social networks users are not captured by these local models, Next,
driven by the theories introduced in the diffusion of innovations re-
search, we introduce a novel diffusion model called Gaussian Logit
Curve Model (GLCM) that models nser behavior with respect to the
behavior of the general population. Our analysis shows that GLCM
captures user behavior significantly better than the local model, es-
peciaily in the context of Digg, Aiming to capture both the local
and global signals, we introduce various hybrid models and eval-
vale their significance through statistical methods. Qur methodol-
ogy-models each user sgparately, sutomatically determining which
users are more driven by their local relations and which users are
better defined through adopter. categories, therefore capturng the
complexity of uman behavior.

1. INTRODUCTION

The advent of online social networks has generated an ever in-
creasing interest in understanding how and why people share infor-
mation online. Such an understanding can help devise methods to
control or maximize [?] the reach of an information item or even
build sociaf networks that provide the right tools for sharing infor-
mation. Various models introduced in the context of online social
networks, ain to explain the behavior of 2 given user by the be-

havior of his/her friends. This entails making the simplification of

modeling users as being aware of only their immediate surmund-.
ing.

The goal of building models of diffusion is hardly new, however,
Soctal scientists have long been building models to study the diffie-
sion of innovations. Although the theory of diffusion of innovations
biings up the importance. of friendship relations as well, it reaches

Permission to make digital or hard copies of all or part of this wark for
personal or classroom use is pranted withowt fec provided that copies are
not made or distritated for profit or commercial advantage and that copies
bear this notice and the full citation on the first page, To copy otherwise, to
republish, to post on servers ar to redistribute to lists, requires prior specific
permission and/or a fee.
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beyond that and identifies various other characteristics of human
behavior that are vital to this process. For instance, it categorizes
people into one of five categories, inovators; early adopters, early
majority, lafe majority-and the laggards, based on their innovative-
ness. This categorization is done on the basis of how early/late a
person adopts an innovation with respect to the rest of the popula-
tion. Therefore, adoption behavior is explained not solely based on
[riend behavior but based on the behavior of the entire popiation.
One of the most interesting findings of this research, which was
first proposed by Rogers [?] is-that users belong to one of the five
adopter categories irrespective of the innevation. This means that
an innovator will lead and not follow ar innovation no matter what
the nature of the innovation is. Simifarly a laggard is inttinsically
reluctant to adopt an idea before a large population has done so.

With the advent of online social networks, researchers largely
moved away from this point of view and moved on to local mod-
els where the behavior of users are explained by the events in their
local neighborhood. In this work, one of our main goals is to ask
the question “should the globat models be tossed away so swiftly?”
and make a case for re-integration of these characteristics for un--
desstanding user behavior. To this end; we first study two represen-
tative focal models [2, 21 in two different online social networks;
Digg and Twitter and show that such models are inadequate in cap-
turing user behavior. In the context of Digg, our goal is to define
the probability of voting on a story. In the case of Twitter, our goal
is to capture the first time a user uses. a specific hashtag. Driven.
by the Tack of fit of the local models and inspired by research in
the diffusion of innovations, we propose a novel diffision model
called Gaussian Logit Curve Model (GLCM) that models user be-
havier with respect to the entire population and captures the inno-
vativeness of a given user based-on its actions. We test the fit of
GLCM in Twitter and Digg and show a better fit compared to the
local models, especially in the case of Digg. To hridge the gap be-
tween these two pempectives, we introduce several hybrid models
that incorporate the social effect as well as the global awareness.
Through the use of various statistical methods and prediction, we
show that the hybrid models perform significantly better than the
local models while performing slightly better than GLCM. For in-
stance in Twitter, prediction results show that the two local models
have a value of'at least 0.8 AT/C (which corresponds to good predic-
tion) for only 11% and 8% of users respectively while this number
is 76% for GLCM, and around 84% for the hybrid models. With
a per-user modeling technique where each user is captuted by the
best model that fits them, this number reaches 92%.

We envision modeling as capturing the characteristics of each
user rather than aiming to find one parameter, or even one model,
to capture all users, Through-a per-user modeling approach, our
methods are able to capture the behavior of every user with the
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model that best fits them rather than applying a one-model-fits-all
techmique. This goal of modeling each user as a distinct entity
introduces ceithin challenges. Methiods such as traditional logis-
tic regression fail for various users due to small samples. There-
fore, we use Firth logistic regression which provides a better fit,
Overall, our approach, which uses a cross social neiworks analy-
sis methodology, chaltenges the current single model approach and
thus the generality of many conunonly used social influence mod-
els. Through the testing of various. models on different networks,
we believe our work takes the first step for creating a general and
practical framework to evaluate diffusion models.

2. LOCAL MODELS

We study the problem of progressive diffusion where ihe users

who adept.an item become active and do not become inactive again
and focus our effoits on per-user modeling,
Linear Friendship Model (LFM): defines the odds of adaption
as. a linear function of the numbet of already-active friends the
agent has [2]. Therefore, the probability p(x)fm} of activation for
an agent with x;p,, already-active friends can be defined as [23:

oW * i +p

O

This model can be tested through logistic regression. The co-

efficient 04 py, measures social correlation’ a larpe value of o ot
indicates-a large degree of cotrelation. The additive nature of this
model is similar to the indepindent cascade model (ICM) and the
Linear Threshold Model (LTM) [2). )
Friend Saturation Model (FSM): The notion of additive inflience
of Triends was challenged in a receni study [?] which claims that
the effect of multiple recommendations by fiiends quickly satuzates
and is approximated as constant. The Friend Saturation Model [7]
that addresses this-notion can be foimulated as another logisiic re-
gression with-one categorical explanatory variable Xy, (Trgn =0
for no active friends and X e = 1 for at least one active friend).

Regression Resulis for LFAM and FSM in Digg and Twitier:
Bias reduced (Firth) logistic iegression is applied to extract oy fm
and Oy, valués for 41348 users who have voted on at least 10
stories. LFM has statistical significance for 8257 users while this
number is 7711 for FSM. Even though a large portion of users
(5786-out of 8257) have positive social correlation, there is a group
that has negative social comrelalion instead, The résulis for Twitter
show a better fi for the local miodels. For the 19666 users that used
atleast 20 distinct hashtags, 12028 had a good fi for LFM (similar
results for FSM), providing a betier it compared (o the results ob-
tained for Digg data set. The 04, values for the users that pass the
likelihood ratio test are mostly greater than 1. The jesults overall
indicate that the effect of the social is higher in Twitter compared to
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Digg: Howevar, the behavior of 2/5 of the users still is not captured

by the local models.

3. GAUSSIAN LOGIT CURVE MODEL

Our goal is to define the odds of adoption for a given user as a
function of the size of the adoption, i.e. the humber of people that
have already adopted it through a gaussian logit. Such modeling
for each user can help determine their optimum time to adopt an
idea therefore capturing the adopter category they belang to in the
community as defined in the contéxt of diffusicn of innovations. In
order o approximate the fit of & ganssian distribution to the odds
of adoption, we use a technique thal has. been used in ecology to
model species response curves to presence-absence dala [7], Sim-
ilar to how species are modejed to respond to an ecological vari-

able, we mode] p(xg,-gc,,,), the probability of adopting an idea as a
function of an environmental variable x,),., that.captures the user’s

- tesponse (o the behaviar of the general crowd, Forthis purpose, we
_ introduce the Gaussian Logit Curve Model (GLCM), in which the

Togit-transform of probability [?] is a quadratic function as follows:

P (xg Tom)

_ 1 (xgicm - P)Z
1-p (xgicm) 2

log{ P

) =by+ blxglr.‘m +b2I§1m =a
@

where %y, is the vamizal logadihm of the total number of people
who hive adopted the idea so far, 1 is the optimum point in the

- innovation curve for a given user to ado pt the innovation. Tolerance
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of auser, i.e. how much the user varies from his/ber mean behavior
is captured by 6. A low sigma. value means that the probability
of adoption changes quickly as the current number of adopters in
the network moves further from the mean () of the given user.
The parameter g is related to the maximum vatue of Pligiem). We
choose Xgp,, 48 the Togaiithm of the number of adopters since the
number of adopters can be a.noisy parameter as it varies largely
for different stories. Using the quadratic model, the. optimum mean
and deviation values can be exiracted from the b values as follows:

# = by f(2b) 3
1

e ®

Prae = (1) = ! )

1-+exp(—bo — biu—by?)

Regression Results for GLCAM in Digg and Twitter: The re-
sults of the Firth logistic regression shiow that the behavior of a
much larger. population can be. described by the global model (=
25050) compared to LFM (=8257) or FSM (27711). This result
suggests that the users. in Digg have consistent adopter behaviors,
i.e. the timing users choose to. vote on a topic w.rt. the votes from
the general crowd is largely independent of the story and mostly
a function of intrinsic characteristics:of the user itsélf. Similady,
a large fraction the Twitter population (19484 out of 19666 users)
has a good fit for GICM.

4. HYBRID MODELS

Our -analysis of the local and global models indicates that the
actions -of the local neighbothood and the entire community can
have different levels of effect on the adoption behavior of a given
user. However, exactly how these two notions inferact is not clear,
Therefore, we tested 5 different hybrid models that represent differ-
ent interactions between the local and global signals. Due to-space
limitations, here we introduce only one.of these hybrid models:
LFMorGLCM is an additive model where the probability of adop-
tion depends .on both the global and the local signals. For this
model, the Togit canbe defines as: logit(p) = by +blxg,~m—|—b2;c§l o+
baX)rm Where Xipp, is the nalural logarithm of the number of ac-
tive friends and x,p., is the logarithm of the total number of active
users. Qur analysis shows that 13990 Digg users pass the likelihood
ratio test for this model while this number is 13672 for Twitter.

5. MODEL EVALUATION

In.order to capture the predictivéness of the models, we perform
20 different experiments for each user whese the data is randomly
divided into test and training sets. Training data consists of 80% of
the data points while the rest is marked as test data. Since a user
adopting an item is a rare eveul, simple methods such as precision
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are not applicable as an evaluation metd<. Therefore, the receiver
operating chargcteristic (ROC) is used to evaluate the models. The
result of ROC analysis can be summarized in one value; the area
wider the ROC (AUC), AUC measures the probability that a clas-
sifier will rank a randomly chosen positive instance higher than a
randomly chosen negative one. An AUC value between 0.5-0.6,
0.6-0.7, 0.7-0.8, 0.8-0.9 and 0:9-1 can be evaluated as fail, poor;
Jfair, good and excellent respectively.
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Figure 1: Area under ROC results for cross valdation tn Twit-
ter '

The results for Twitter are-provided in Figure 1. Bach curve in
this figure corresponds to the: CDF distribution of AUC values for
a given model across all the users. For instance a point {x,y) on a
given curve means that y fraction of users have AUC value of less
than or equal to x for that given model. Therefore, a curve that is
closer to the x-axis is preferred. It is ohvious that the local models
LFM and FSM consistently perform worse than the global and the
hybrid models. Of the hybrid models, FSMerGLCM performs the
worse while the others have comparable performance. For Digg,
GLCM performs very similar to the hybrid models while in Twitter
W¢ 566 SOme improvement in performance by using one of the hy-
brid models (except FSMorGLCM). These results show that a hy-
hrid model alone provides “some” added value but the difference is
not drastic, ' _

Capturing the “best” model through nser-centric modeling:
One of the advantages of performing user-centric modeling is that
it is not necessary to find one model to fit all users. If for each user,
the best model is chasen based on their AUC values, the fit can be
improved as given by the curves named all-model in Figure 1. For
Instance, consider the performance of the models in the context of
Twitter. The vertical line at x = 0.8 shows that the fraction of users
for which the models LFM, FSM, GLCM, LFMorGLCM, FSMor
GLCM, GausGLM, GausGLM2 and GLIM perform at least good
(x=0.8} on average are 0.1107, 0.0828, 0.7680, 0.8568, 0.6009,
0.8393, 0.8354 and 0.8309 respectively. However, if there is no
restriction to use one model to fit all users and rather choose the
best model per user, this value reaches 0.9294 as given in the curve
named all-model. These results demonstrate the importance of cap-
furing each user as a separate entity with distinct intrinsic charac-
feristics.

6. CONCLUSION

In this paper we studied the diffusion of information in two dif-
ferent networks, Digg and Twirter and investigated the validity of
commonly used local influence models. We studied two different
local models to address this question. The results indicate that Digg
users show little social corrclation while Twitter has overall more
social correlation. Due to the large number of users whose behavior
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is-not captured by the local model, we introduced a novel diffusion
model called Gaussian Logit Curve Model that is inspired by the
research in the theory of diffusion of innovations. GLCM captures
a user’s global behavioy, i.e. how fast or slow they vote on sto-
ries in Digg or they use haskitags in Twitter compated to the rest of
the social network community. GLCM gives significant improve-
ment over the local models for Digg while the results for Twitter,
although still impressive, are not as strong as. the results for Digg.
In order to capture both the local and the global signals we intro-
duce a nuinber of hybrid models. Prediction results show that the
hiybrid mmodels provide a great improvement over the local models
while the improvement is not as pronounced for GLCM.

The results presented in this paper also raise the higher level
question for our research community: “How generalizable are the
social influence models that have been used in the area of social
networks? Are we, as a community, too eager to look for social
effects in any online tool that simply has a friend button?” Given
the outcomes of this study, there are various future research direc-
tions. As future work, we aim to investigate the effectiveness. of
maximization of diffusion techniques introduced in the context of
purely local models and to construct optimal methods for the per-
user modehing technique, It is also important to investigate new
and efficient techniques for predicting the future popularity of in-
formation items based on the new models. Finally, through a cross-
network, cross-mode! evaluation framework our work takes the first
step for a general framework to study models of diffusion, We: be-
lieve it is an important task to enrich this framework by studying
other social networks and-diffusion models.
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Apple vs. Android: a comparison of social effects in adoption
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1. INTRODUCTION

It has long been known among marketers that our social
network matters when we make purchasing decisions, and that
lLiaving positive word of mouth aboitt a product car be & key to
success; see e:g. [1] for 4 review of studies on social networks
within marketing. Traditionally, datd on social networks have
been difficult to collect, bui in recent years researchers have
pained access to thassive social network data ffom e.g. online
instant messaging services [8}[5] and phone log data
[21[4]{3][61[9]. Such data has made it possible to siudy e.g.
social churn [3}, service uptake [2] amotig telecom customers,
and prodnct adoption on an Instant Messaging network
{8].These studies confirm that consumer behavior is dependent
on the communication network. We have in & recent study [6]
shown how the structure of the adepter network--the social
network of adopters—develops over time, and how social
spreading can be measured by studying this network. In this
paper, we do a comparative study of social spreading effects
for two competing types of smartphones - the Apple iPhone,
and smartphones based on Google’s Android OS.

O METHOD

Our social network i built by eollecling anonymized call data
records, aggregated over a 3-month pertod, and then using the
communication links (voice and sms) as proxy for the social
relationships. Other studies have shown that mobile phone
activity is & good way to measure real social relationships [3].
Te remove error sources dus to ‘mon-personal’ relationships,
we have applied some filtering of the dataset, regarding
exireme outlier nodes (based on combinations of extreme
usage and degree) as machines, and removing them. Only
traffic between Telenor customers is nsed; calls to other
operators are excluded. For this study we have also included
weak links —relations with lmited SMS/voice traffic in the
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period. In total we end up with a network containing around
2.5 million nodes and 45 million edges.

We also use handset type data to associate a handset type with
cach node in the social network. With these data we can define
the ‘adoption network” — the social network among adopters
{6]. This is simply the sub network consisting of adopters and
their conimon links. We can then study the development of the
adoption network for iPhones (viewed as a single ‘product’)
f6]—and for Android phomes, over time (again making no
distinction among the varicus models of Android phones).
These same data allow us to measure conditional adoption
probabilities between neighbors on the network, which we use
as an indicator of social effects. Finally, we use posteode
information—very coarse-grained geographic information—
on subscribers fo map smariphone adoption to geographical
areas.in Norway.

IfI. RESULTS

Ina previous paper {6], we looked at the mrowth of the iPhone
adoption network over time, showing clearly the developnient
ofa *social monster"—a giant comnécted component of the
adoption network which shows the fastest growth. We equated
the strength of this monstér with' the presence of iPlione
adopters in the “dense core’ of highly ceritral subscribers—a
sigm of success of the product in taking off.

In Figure 1, we compare the growth of the Apple adoptlon
network with that of the Android adopiion netwotk, on a
quarterly basis. In each case, we start with the quarter in which
the ‘product’ was first faunched. While we see 1o drarnatic
differenice in the'first-quarter picture (Fig 1(a)), it is clear that
already, two quarters lafer (Fig 1(c)), the Apple ‘monster’
(Largest Comected Component - LCC) s growing much more
rapidly than the Android monster. This holds not only for total
number of adoplers in the LOC, but also in ferms of the]r
percentage of all addpters: two. duarters after launch, the
Apple LCC has ca 38% of all adopters, while the Android
LCC has around 28%,



Enfb rmation

‘“}{‘ s-‘;r»" %i\i G g g,

B g i i

mﬂwnmiwwe?w i

Figure 1

The figure shows the evolution of the iPhone (Red/Left) and Android (Blue/Right} adoption networks during the 3 first quarters nfter launch of the first
respective brands. The nodes are customer with iPhone{red) and Android (blue). Links indicate communication between the nodes. Figure a} is the quarter when
the handset first appears in the market, b) is the next quarter and c) is third quarter after product launch. Isolated nodes zre not shoven —i.e iPhone cnstomers that
do not knaw ather iPhene buyers or Android Customers that donot call other Andmid customers will not appear in this visualization.

For another indicator of social adoption, we look at the
mumber of inter-adopter links (adoption pairs) in each
adoption network, over time. Figure 2 tracks the number of
adoption pairs for each product, versus the total mumber of
adopters. The black dotted curve in Figure 2 gives the number
of adopter pairs expected, for the given total number of
adopter pairs on the fixed cal] network, if adoption was purely.
random. We see that both products generate many times the
rumber of adopter pairs expected from this random reference
model. Thus, both products'show significant social adoption—
but, again, the effect is clearly weaker for Android. (The ratio
between the empirical number of adopters, and_ that number
found in the random reference model, was studied in Ref. [6]
and termed ‘kappa’.).
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Figure 2

The plot shows the nmumber of adoption pairs (Connected customers
adopting same type of haudset) vs. the total number of customers having
the brand (x-axis). Red soiid libe is Phone, blue stippled line is Aridroid
and black dotted Line is the random simulation modsl.
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In Figure 3 we plot yet another indicator of social adoption,
Here we look at p, (k) —the conditional probability that,

given that a rode has k neighbors adopting product X, the
node in question has also adopted product X.

Since random adoption gives a flat p, (£), the positive slope
of the empirical results in Figure 3 are again taken as evidence
for social effects (of some kind) in adoption—for both
products. The difference between Apple and Android is seen
here in that the Android curve. has more weight af small k—
flattening out at large k—while the Apple curve has less
weight at small k; but grows. more steeply, and more nearly
linearty, with increasing k. These data were taken in (f3/2011,
In this period, the Apple and Android penetration were
approximately cqual (around 18% each). Hence we see that
Pk} is underrepresented af smal! k (compared to the random
cdse, ie, a flat line at p(k) = 18%), and overrepresented at large
k, for both products—but the skew is gredter for Apple than
for Android. Taking this skew as an indicator of social
adoption, we find again that Apple is ‘more social’ than
Android.

We next perform a numerical experiment, in which we merge
the two adoption networks—forming a ‘smartphone adoption
networl’—and then scramble the placement of the iPhones
and Android phones randornly among the smartphone users in
thiz* network., The result is a simple network maodel of: a
‘brand-indifferent” smartphone wuser. What we find,
remarkably enough, is that p, (k) is strongly atfected by this
re-scrambling for iPhone users; but essentially unchanged for
Android users (compare the solid green curve if Fig 3 with the
green friangles). That is, by this measure, Android users-do not
care (statistically}) whether- their contacts use Android or
iPhone—while iPhone users certainly do have a preference.
We can also see this by simply taking the total number of
friends using each type of smartphone, for each type of unser.
We find that the average Apple user had over two times as
many - Apple friends as statistically expected from no
preference—while all other results (nutfibet of Apple friends
of Android users, and number of Android friends of Apple and
Andreid users) were statistically consistent with no
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Figure 3.

The plot shows ego’s haudset adopticn probability, given k contacts with same handsét; Red solid ling is the empirieal iPhone. adoption probability, aid green
solid iine js thie sume for Android Resulls are also shiwn for numierical experimeirts in which the brands chosen ars randomly scrambled—keeping the total
number of ¢ach coustani—among smariphone adopters (the *brand-indifferens’ model). Grées trigles and purple x°s show, respectively, ihe Android and
Appie pairs found when users are randomly scrambled in this. ‘brand-indilfarent” way over the smariphone network. We note that the true empirical distribution
of Android-Android pais is almost identical to. st seen for the “brandvindiMerent’ model—while the empirical Apple results show a strong bias towards Apple

adoption with iy Apple-adopiing frends.

Apple/Android preference. In short: restricted to. smartphene
usets, we again find that Apple users:have more friends, and a
stronger preference for their ‘own kind’. Finally, when we
“drop the restriction to smartphone users, we still find that
iPhone users have more conlacts on the call graph (our proxy
social network) than do Android users—averaging around 45
fof the former, conpared to around 33 for the latter.
Inspired by these results, we have examined the ggographic
distributions of these two products. Our method here was to
first apgregate Apple and Android adoption totals over
Norwegian postal codes, and then take the ratio of the two.
What we find (not shown here} is that Apple is domirating in
Norway’s cities. Since these resilts are also from Q3/2011,
there are roughly equal mumbers of Apple and Android
phones—so that Apple cannot win everywhere. Thus we see a
rather stark urban/rural dichotomy, with Apple dominating the
cities, and Android turning up dominant in scattered apois in
the countryside. .

We conjecture (but have not yet tested) that the high-centrality
users (48 measured by eigenvector centrality) are concenirated
geographically in the cities (just as they are concentrated, by
definition, in the dense core of the social nefwork). In any

case, all of the above results give 4 picture of Apple usirs ds’

being more attracted to other Apple users than are Android
users o othet Android users—but-also, more social in general.
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Historical examples of mass political action such as social revolutions are often cascades of
collective action resulting from local mobilization. In this study, we examine the possibility of
universal action as a result of local learning and other-regarding decisions to act. We propose
a dynamic variation of the threshold model (Granovetter 1978) in social networks. Similar to
Gould (1993), Chwe (1999), Centola et al. (2007), and Watts (2002) we study the relation between
network structure and the diffusion of collective action. In addition to structural conditions, such
as diffusion asymptotics, we examine the difference between two classes of learning: observational
and communicative (Acemoglu and Ozdaglar 2011). Hence we examine the possibility of cascades—
or partial diffusion—based on two parameters: network connectivity and learning mechanism. In
particular, we want to link levels of graph connectivity to the possibility of action cascades.

Intertwined Learning and Action Dynamics: The model we propose is a combination
of action and threshold dynamics. At each time unit, actors update their thresholds based on a
weighted average of their own and their neighbors’ thresholds; this is known as the the DeGroot
learning model (Goltub and Jackson 2007). They also decide on taking action or abstaining based
on the comparison between their personal threshoids and the proportlon of their social network
neighbors who acted in the previous round. (

The existing strategic models of collective action, such as global games, condition decisions
on noisy representations of the situation, e.g. power of the government (Dahleh et al. 2012). We
instead take the thresholds to be the citizens’ assessment of the government power: the highey they
are, the less likely the person is to act against the status quo. This self-sufficient, citizen centric
definition of thresholds relies on the assumption that regardless of material might, governing is
not sustainable when citizens stop to believe in the legitimacy of power. Qur model also decouples
threshold dynamics from action dynamics, hence allowing for a separate examination of private
beliefs-reflected in thresholds—and public actions, similar to the dissonance studied in Kuran
(1989). We will show that the actions can ﬂuctuate while beliefs are hardened and vice versa.

Asymptotics & Transient Behavior: In the first section of the project, we examine the
dynamic equations for actions and thresholds in the case of canonical network configurations such
as fully connected, star, ring, and infinite path topologies. For a number of these cases, we find
conditions under which cascades of collective action are possible. When not, we find the size of
islands of action defined as the “radius of diffusion.”

Emphasis on Radius of Diffusion: We examine the minimum number of radicals needed
to ignite a cascade or generate a stable island of action. We show that observational learning can
not help diffusion much: communication is needed to ease the spread of action. When radicals,
lLe. agents with low thresholds, are in minority, highly connected graphs are often detrimental

“The authors are affiliated with Yale University: navid.bassanpour@yale.edu, ji.liu@yale.edu,
sekhar.tatikonda@yale.odu
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to cascades, see figure (1). In such situations we demonstrate that adding links does not help
collective action. This is in line with the conciusion in Hassanpour (2012) on the consequences of

Figure 1: When learning is observational, islands of activity are possiblé on the simpler grid, while
they are not sustainable.on the more connected pattern on the right. Connectivity is not always
helpful. In both networks, agents are located at the intersection of horizontal and vertical lines.
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An Analysis of One-Dimensional Schelling Segregation

Christina Brandt*  Nicole Immorlica’  Gautam Kamath?! Robert Kleinberg?

Introduction

In 1969, economist Thomas Schelling introduced a landmark model of racial segregation. Elegantly
simple and easy to simulate, it provided a persuasive explanation of an unintuitive result: that
local behavior can cause global effects that are undesired by all [4]. We investigate his model in an
attempt to better understand the dynamlcs which result in residential segregation.

In Schelling’s model, individuals of two races, denoted z and 0, are placed near one another, This
represents a mixed-race city, where individuals of different races live in close proximity. Individuals
are satisfled if at least a fraction 7 of the other agents in a small local neighborhood around them
are of the same type. Unhappy agents can move locations, either by inserting themselves into new
positions or exchanging locations With other agents. In Schelling's experiments, he found that on
average, an individual 7 with 7 = 5 ended up in a significantly more segregated neighborhood with
approximately 80% of i's neighbors having i's type.

However, it is surprisingly difficult to analytically prove or even rigorously define the segregation
phenomenon observed qualitatively in simulations. Much of this difficulty lies in the fact that
the dynamics may converge to a variety of states (complete segregation, complete integration,
and various partially segregated states), and so the underlying Markov chain does not have a
well defined unique stationary distribution. Prior work {7, 8, 9, 10} circumvents this difficulty by
introducing perturbations in the dynamics, allowing individuals to perform detrimental actions with
vanishingly small probability. The research then analyzes the degree of segregation in stochastically
stable states, finding generally that as time approaches infinity, complete segregation is inevitable.

We instead analyze the one-dimensional segregation dynamics directly, providing the first rig-
orous analysis of an unperturbed Schelling model. Our model considers a society of n individuals
arranged in a ring network. We start from a random initial configuration in which each individual
is assigned type = or o independently and uniformly at random. We parameterize the neighhorhood
size in the Schelling dynamics by w. An individual is said to be happy if at least w of his 2w nearest
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neighbors are of the same type as him and unhappy otherwise. We consider the model of dynamics
under which random pairs of unhappy individuals of opposite types trade places in each time step.

Methods and Results

In stark contrast to previous analyses of approximate dynamics, we prove that onee the dynamics
converge, most individuals reside in nearly integrated neighborhoods; that is; the average run
length in the final configuration is independent of n and only polynomial in w. Thus, contrary to
the established intuition, the local dynamics of Schelling’s model do not induce global segregation
in proportion to the size of the society but rather induce only a small degree of local segregation.

We observe that a sequence of at least w+1 consecutive individuals of the same type is stable.
Every individual in this configuration is happy, so they will never move away. We name this type
of configuration a firewall. Tt can be shown that, with high probability, all, happy individuals in
the final conﬁguratlon will be in a firewall. Qur analysis centers around showing that there will
be many firewalls, thus providing an upper bound on the length of any individual firewall. Tn
particular, if we ha.ve a firewall of one type, bt know that it is between two nearby firewalls of the
opposite type, this hmits how large the firewsll may grow.

Tn order to track the productlon of firewalls, we analyze how configurations known as firewall
incubators develop over time. A firewall incubator is & segment of length O(w) which has a strong
imbalance in the types of the contained individuals at the begmmng of the process.” Intuitively,
we'd expect that these incubators are ‘likely to become firewalls. By applying the central limit
theorem, we show that a segment is a firewall incubatot with constant probability.

We then examine how the dynamics affect a firewall incubator over time. We would like that
an incubator experiences enough “good” swaps to become a firewall, and does not undergo enough
“bad” swaps to lose its initial imbalance in types. Using & probablhstlc lemma known as the Baliot
Theorem [1, 2, 3], we show that a firewall incubator becomes a ﬁrewaII Wlth probability inversely
proportional to w.

This reasoning depends on a key assumption: the proportlon of unhappy individuals of each
type is close to balanced for the majority of thie process. We justify this through an application
of Wormald’s theorem 5, 8], which allows us, under suitable technical conditions, to approximate
& discrete-time stochastic process with a continuous-time differential equation. This is technically
non-trivial due to complications with infinite differential equations.

Together, these steps allow us to conclude our main result,

‘Theorem 1. Consider the segregation process with window size W’ on a ring network of size n,
starta'ng fromia uniformly randem initial configuration. There ézists o constant ¢ <1 and a Junction

: N = N such that for all w and oll n > no(w), with probability 1 — o(1), the process reaches
a conﬁgumtzon after finitely many steps in which no further swaps are, poss'cble The average run
length in this final configuration is O(w?). In fact the distribution of runlengths in the final
configuration is such that for all A > 0, the probabzlzty of ) mndomly selected node belongmg to a
run of length greater than Auw? is bounded above by ¢t
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On Bitcoin and Red BallQo'ns *

Moshe Babaiofft Shahar Dobzinski* Sigal Oren ¢ Aviv Zohar1

Many large decentralized systems rely on information propagation to ensure their proper fumction. We
examine a cominon scenario in which only paiticipants that are aware of the information can coripete for
some reward, and thus informed participants have an incentive not to propagate information to others. One
recent example in which such tension arises is the 2009 DARPA Network Challenge {finding red balloons). We
focus on another prominent example: Bitcoin, a decentralized electronic currency system.

Bitcoin represents a radical new approach to monetary systems. It has been getting a large amount of
public attention over the last year, both in policy discussions and in the popular press [3, 6]. Its cryptographic
fundarnentals have largely held up even as its usage has betome increasingly widespread. We find, however,
tliat it exhibits a fuhdamental problem of a different natire, based on how its incentives are structured. We
prepose a modification to the protocol that can eliminate this problem.

Bitcoin relies on a peer-to-peer network to track transactions that are performed with the currency. For
this purpose, every transaction a node learns about should be transmitied to its neighbors i the network.
As the protocol is currently defined and implemented, it does not provide an incentive for nodes to broadcasi
transactions they are aware of. In fact, it provides an incentive not to do so. Qur solution is to augment the
protocol with a schere that rewards information propagation. Since clones are easy to create in the Bitcoin
system, an important feature of our scheme is Sybil-proofness.

We show that our proposed scheme succeeds in setting the correct incentives, that it ia Sybil-proof, and
that it requires only a small payment overhead, all this is achieved with fterated elimination of dominsted
strategies. We complement this result by showing that there are no reward schemes in which Information
Propagation and no self-cloning is a dominant strategy. ’ )

Introduction

In 2009, DARPA announced the DARPA Network Challenge, in which participants competed to find ten red
weather balloons that were placed at various locations across the United States [2]. Faced with the daunting task
of locating balloons epread across a wide geographicsl area, participating teams attempted to recruit individuals
from across the country to help. The winning team from MIT, incentivized balloon hunters by offering them
rewards of $2000 per balloon they locate [5]. Recognizing that notifving individuals from all over the US about
these rewards is itself a difficult undertaking, the MIT team cleverly offered additional rewards of $1000 to a person
who directly recruits a balloon finder, a reward of $500 to his recruiter, and so on. These additional payments
created the incentive for participants to spread the word about MIT’s offer of rewards and were instrumental in
the tearn’s success, In fact, the additional rewards are necessary: each additional balloon hunter competes with
the participants in his vicinity, and reduces their chances of getting the reward,

MIT’s scheme still requires further improvement. As it is, a participant can create a fake identity, invite the
fake identity to participate, and use that identity to recruit others, This Sybil attack increases the participant’s
reward by 50%. Reward schemes should be resistant to such attacks.

A related setting is & raffle, in which people purchase numbered tickets in hopes of winning some luxurious
prize. Hach ticket has the same probability of winning, and the prize is always allocated. As more tickets are
sold, the winning probability of & specific ticket decreases. In this case again, there is a clear tension between
the organizer of the raffle, who wants as many people to find out about the raffle, and the participants who
have already purchased tickets and want to increase their individual chances of winning. The lesson here is
sitmple; to make raffles more successful participants should be incentivized to spread the word, One example of a

*This is an extended abstract. The full version has appeared in BEC'12 and is availabls from the authors’ websites.
T Microsoft Research, Silicon Valley. moshe@microsolt.com

*Deepartment of Computer Science, Cornell University., shahar@es.cornell.edu

$Department of Cowputer Beidnce, Comnell University, sigal@cs.cornell.edu

TMicrosoft Research, Silicon Valley. avivz@micresolt.com
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raffle already implementing this is Expedia’s “FriendTrips” in which the more friends you recruit the bigger your
probability of winning.

Our goal is to design reward schemes that incentivize information propagation and counter the dis-incentive
arising from the competition from other nodes, and are Sybil proof while having a low overhead (a total reward
that is not too high). In particular, we identify the need for such incentives in the Bitcoin protocol, our main
example for the rest of this letter. First, we introduce Bitcoin and explain where the incentive problem shows up.

Bitcoin. Bitcoin is a decentralized electronic currency system proposed by Satoshi Nakamoto! in 2008 as an
alternative to current government-backed currencies [4]. Bitcoin has been actively running since 2009, and has
been getting a large amount of public attention over the last year. It represents a radical new approach to monetary
systems which has appeared in policy discussions and in the popular press. Its cryptographic fundamentals have
largely held up even as its usage has become increasingly widespread.

Bitcoin’s appeal lies mainly in the ability to quickly transfer money over the internet, and in its relatively low
transaction fees.”? As of September 2012, there are 10 milliou units of currency in circulation {called Bitcoins)
which are traded at a value of approximately 11 USD per bitcoin.

Bitcoin relies on a peer-to-peer network to verify-and authorize all transactions that are performed with the
currency. Transactions are cryptographically signed by the owner of the bitcoins that wishes to transfer them, and
are gent to nodes in the peer-to-peer network for authorization. Each node in the netwotk is supposed to propagate
the transaction to its neighbors. Upon reteiving a transaction, each node verifies that it is properly signed by
the bitcoins’ owner, and then tries to “anthorize” the transaction by attempting to sclve a computationally hard
problem (basically inverting a hash function). This authorization process is a key ingredient in maintaining
Bitcoin's security (refer to [4] for details). Once a node successfully authorizes a transaction, it sends the “proof”
(the inverted hash) to all of its neighbors. They in turn, send the “proof” to all of their neighbors and so on.
Finally, all nodes in the network “agree” that the transaction has taken place and was authorized.

In compensation for their efforts, nodes are offered a payment in bitcoins for successful authorizations. The
system is currently in its initial stages, in which nodes are paid a predetermined amount of bitcoins that are
created “out of thin air”. This also slowly builds up the bitcoins supply. But Bitcoin’s protocol specifies an
exponentially decreasing rate of money- creation that effectively sets a cap on the total number of bitcoins that
will be in circulation. As this payment to nodes is slowly phased out, bitcoin owners that want their transactions
approved are supposed. to pay fees to the authorizing nodes,

This is where the incentive problem manifests itself. A node in the network has an incentive to keep the
knowledge of any transaction that offers a fee for itself, as any other node that becomes aware of the transaction
will compete to authorize the transaction first and claim the associated fee.

The consequences of such behavior may be devastating: as only a single node in the network works to authorize
each transaction, authorization is expected to take a very long time. :

We stress that false identities are a prominent concern in Bitcoin, In fact, the Bitcoin protocol is built around
the assumption that nodes can create false identities, thus, for a transaction to be approved, nodes that control a
majority of the CPU power in the network should accept it, rather than just a majority of the nodes. The latter

is vulnerable to Sybil attacks. Therefore any reward scheme for transaction distribution must discourage such,
attacks.

The Model

‘We present our model for information propagation in Bitcein’s a.uthonz&tmn protocol. For a more detailed
presentation, refer to f1].

We assume for simplicity that the network consists of & forest of cornplete d-ary directed trees, each ‘of them
of height H. We model the authorization process of a single transaction in two phases: a dxstnbutlon phase and
a computation phase.

In the beginning of the distribution phase the buyer sends the details of the transaction to the t roots of the
trees (which we termn seeds). Each node v that is aware of the transaction can send the information to any of
its children, before sending to any child it can add any number of fake identities. Al of v’s fake identities are
connected to the same set of children. A node can condition its behavior only on the length of the referral chain
above it, which can possibly mclude false identities that were produced by its ancestors.

1The name Satoshi Nakamoto appears to be an alias. The real identity of Bitcoin’s creator remains a mystery.
2There are additional properties that some consider as benefits: Bitcoins are not controlled by any government, and its suppiy
will eventually be fixed. Additicnally, it offers some degree of anonymity.
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In the computation phase cach node that is aware of the transaction tries to authorize it. If there are k such
nodes, each of them has the same probability of -,Ic- to authorize it first. We assume that there is a minimal
payment for authorization, normalized to 1, which is necessary to motivate the nodes to work on authorizing the
transaction.

‘When a node succeeds in authorizing a transaction we can reward nodes on the chain. (starting at some seed)
to that node. This chain may contain false identities as well, but cryptographic tools ensure that no node can
remove its ancestors from the chain.

Reward Schemes

‘We suggest a rewarding scheme family called the (B,?i)-ahnos_t-unji'orm family, we then combine schetnes from
this family to create a hybrid scheme that possessés better qualities. '

(8, H)-Almost-Uniform Schemes. The rewards of schemes in this family are defined as follows: Suppose that
a node v has authorized the transaction, and has a chain of I nodes through which it has received the transaction.
If { > H no node is rewarded (so nodes “far” from the seed do not attempt to authorize the transaction}.
Otherwise, each node in the chain except v gets a reward of 8, and v gets a.reward of 1+ {(H — 14 1)8. Hence,
the total rewards that the scheme allocates is 8- H + 1.

Given that there are Q(8™') seeds, the (8, )-almost-uniform scheme creates the incentives for each node to
propagate information to all its children without duplicating itself. Specifically, we-show:

Theorem. If there are Q(3™") seeds, the (8, H)-almost-uniform scheme guarantees that only strategy profiles that
ezxhibit information propagation and no duplicution up #ll o height of H survive every order of iterated remowal
of dominated strategies.

This gives us two interesting schemes, for two different values of 8 that offer tradeoffs betwsen the total
payment and the number of seeds that need to be initially notified. The first scheme the {1, H)-almost-uniform
scheme which requires only a constant number of seeds and its total payment is always O(H). ‘The second scheme
is the (57, H ) alinost-uniform scheme. This scheme works if the niumber of seeds is Q(H).-Its total payment is 2.

The Hybrid Scheme. We combine the (—Il?, H)- and (1,1+log, H)-almost-uniform schiemes to-create a hybrid
scheme that requires only a constant mimber of seeds and pays only a constant amount in expectation. We obtain
the following result:

Theorem. In the hybrid rewarding scheme; if the number of seeds is at leust 14, the only strutegies that always
survive terated elimination of dominated strategies exhibit information prepagution und no duplication. In addi-
tion, there erists an elimination order in which the only strategies that survive exhibit information propagution
and: no duplication, Furthermore, the expected sum of puyrients is at most 3.
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On Threshold Models over Finite Networks

Elie M. Adam, Munther A. Dahleh and Asuman Ozdaglar*

Networks intertwine with every aspect of our modern lives, be it through sharing ideas,
communicating information, shaping opinions; performing transactions or delivering utilities.
Explicitly, we may cite social networks, financial networks, economic networks, communication
networks and power networks, Interactions over those many different types of networks require
agents to coordinate with their neighbors. In economic networks, technologies that conform to
the standards used by other related firms are more productive; in social networks, conformity to
the behavior of friends is valuable for a variety of reasons. The desire for such coordination can
lead to cascading behavior: the adoption decision of some agents can spread to their neighbors
and from there to the rest of the network. One of the most commonly used models of such
cascading behavior is the linear threshold model introduced by Granovetter in 1978. This model
is used to explain a variety of aggregate level behaviors including diffusion of innovation, voting,
propagation of rumors and diseases, spread of riots and strikes, and dynamics of opinions.

Most analyses of this model in the literature assume that one of the behaviors adopted by
the agents (represented by the nodes of a graph) is irreversible, meaning that agents can only
make a single switch into this behavior and can never switch out from it. However, incurting
this progressive property in behavior dilutes several perspectives of the dynamics: whereas
some situations are best captured by such a variant, many others cannot be captured but by
allowing players to. revert back to previous actions. A main motivation for example would be
opinion dynamics in social network: in most situations a player changes opinions back and
forth. This said, the literature lacks a satisfactory characterization of the limiting properties of
guch a model.

In this paper, we consider a model of cascade effects based on binary linear threshold dynam-
ics over finite graphs. We start from an explicit coordination game set over a finite undirected
network. The payoff of each agent is the sum of the payoff in a two player and two action coor-
dination game the agent plays pairwise with each of the neighbors (the action is fixed across all
interactions). We then study the behavior induced by best response dynarmics, whereby each
agent changes the played action to that which yields highest payoff given the actions of the
neighbors. We first show that best response dynamics are identical to the dynamics traced by
the linear threshold model with heterogeneous thresholds for the agents. However, crucially,
actions can change multiple times, Thus, the dynamics of interest. for the set of problems posed
here cannot be studied using existing results and in fact have a different mathematical struc-
ture. The main contribution of this paper is to fully characterize these dynamics. We provide
three sets of results. :

We establish that agent behavior cycles among different, actions in the limit, we term such
limiting behavior as convergence cycles. We characterize the length of those convergence cycles.

*All authors are with the Laboratory for Information and Decision Systems, Massachugetts Institute of
Technology, Cambridge, MA 02139. (emails: eadam@mit.edu, dahleh@mit.edu, asuman@mit.edu)
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Ultimately, we show that for any graph structure on the players, any threshold distribution over
the players and any initial action configuration played by the players, the limiting behavior of
the dynamics get absorbed into action configuration cycles of length at most two. In other
words, at the limit, every agent either plays one action, never deviating, or keeps on switching
actions at every time step. We then characterize the time required to reach convergence cycles,
termed as convergence time. Building on the framework set up, we show that for some positive
integer mn, given any graph structure on the players, any threshold distribution over the players
and any initial action configuration, the dynamics reach a non-degenerate cycle or a fixed-point
in at most mn? time steps where n is the number of players. We mention that similar results
on convergence cycles and quadratic convergence time for linear threshold models (termed
differently) have appeared in the literature on Cellulaf Automata. They consider the same
dynamies, and prove the same bound on the length for convergence cycles and a quadratic
bound on the convergence time. We approach the problem from a different perspective. We
build a combinatorial framework for the analysis and begin by imposing restrictions on the
model to obtain the essence of it, the simplest case. We then extend the results removing
one restriction"at a time. We take care to show how crucial properties carry on and morph
as we increase the complexity of the model. Our aim is to give the reader enough familiarity
and insight from those trensformations to be able to manipulate the model as needed. We
furthermore improve the convergence time bound from quadratic to be uniformly not more
than the size of the network whenever the graph in concern is either a-cycle graph or a tree.

We then study the complexity of counting and decision problems that arise in this model.
We are interested in characterizing the nurber of limiting states the system could get absorbed
. 'We begin by arguing that no ‘insightful’ uniform upper-bound or lower-bound can be
established. Considering only the case of a cycle graph, the number of fixed-points may vary
at least from 2 to 2*/® depending on the threshold distribution. Instead, we turn to study how
tractable it is to count the convergence cycles. We proceed to show that given a graph structure
on the player and a threslold distribution over the players as input, the problem of counting
the number of limiting configuration classes (i.e. either fixed-points or non-degenerate cycles),
the problem of counting the number of fixed-points and the problem of counting the number
of non-degenerate cycles are all #P-Complete. We further consider the problem of deciding
whether an action configuration over the network is reachable along the dynamics, To this end,
we show that given a graph structure on the player, a threshold distribution over the players and
some action configuration played by the players as input, the problem of deciding whether that
action configuration is reachable is NP-Complete. We also show that given a graph structure
on the player, a threshold distribution over the players and some reachable action configuration
played by the players, the problem of counting the number of sction configuration preceding
that reachable action configuration is #P-Complete.

Of central importance in the study of cascades over networks is the resilience of networks to
invasion by certain types of behavior (e.g., cascades of failures or spread of epidemics). For the
new dynamics defined by our problem, we define & measure of resilience of a network to such
invasion that captures the minimal ‘cost of recovery’ needed when the model is confronted with
a perturbation in the agents’ action profile. We prove achievable uniform lower-bounds and
upper-bounds on the resilience measure, we compute the resilierice measure of some network
structures and provide basic insight on how different network structures affect this measure.
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Abstract

Online social networks can be used as networks of human sensors to detect fmportant eventd [3] — from a global
breaking news story to an incident down the street. It is important to be able-to detect. such events as early as possible,
To do s0, we propose a nonparametric method that predicts trending topics on Twitter by comparing a recent activity
signal for a topic to a large collection of historical activity signals for trending and non-trending topics. We posit that
the signals observed for each class of topics were generated by an unknown set of lafent scurce signals for that class
according to a stochastic model depending on the distance between the cbservation and: its latent source, and propose a,
class estimator based on this model. Using our method, we are able to detect trending topics in advance of Twitter 79%
of the time, with a mean early advantage of 1 hour and 26 minutes, while maintaining a true positive rate of 95% and a
false positive rate of 4%. In addition, our method allows for tradeoffs between errar types and relative detection time,
scales to large amounts of data, and provides a broadly applicable framework for nonparametric classification.

Empirical Observations

On Twitter, users can post short, public messages known as Tweets. There are. over 400 million Tweets written every day,
many of which can be considered cbout one or more topics. For example, this tweet by one of the duthors (Twitter handle
@snikolov} “Stugmesant High School Taps ‘Stuy Mofie’ ot Gloogle, Foursquare to Enhance Computer Science Progrom via @Betabeat
http:/ /betabeat.com...” is abowut “Stuyvesant High School”, “Computer Science”, and so on. Becanse of the public nature of Twitter,
topics can spread and gain popiilarity. ‘Topics that gain sudden widespread popularity start trending i.e: they are featured on a list
of top ten frending topics on Twitter. ' : '

Trending $opics can typically be detected by a sudden high-magnitude spike in activity over some baseline of activity [2][1]
However, this sndden spike is often preceded by lower magnitude activity that is indicative of the topic’s imminent popularity. This
suggests that we can detect trending topics earlier by dbserving this early activity: Thus, we propose to predict whether a topic
will become trending by comparing recent time series of activity for the topic to historical time series of activity leading up to other
topics becoming ‘trending, and historical time series of -activity for topics that did not become trending.

We define the aclivity signal for atopic'in terms of the rate pln] of Tweets about that topic over time, at time binsn =1,..., Nops-
We observe that activity is typically characterized by spikes above a baseline rate, so we further transform the rate to normailize
away the baseline (ppin] = (p[n]/8)", b =3, pn}/Noss) and emphasize spikes {py , ] = |ps[n] — palr — 1]{™}, according to parameters
azl,f>l{weuseda=1.2 8= 1). In addition, we convolve the result with a smoothing window to eliminate noise and effectively
measure the volume of Tweets in a sliding window (g 0[] = 327 _ Homoosn 11 P[]}, Finally, because the spread of topics can
reasonably be thought of as a branching process, and hrancliing processes exhibit exponential growth, we measure the volume ps, .
at a logarithmic scale (py,a,c,1[r] = log ps,s,s 7))

Data Model

Activity signals, even within a single class, are incradibly diverse. Rather than training a model to distinguish between the activity
signals of trending and non-trending topics, we assume no model structure at-all and instead propose the following nonparametric
model relating observed activity signals {observations) to their clase labels. Suppose there are two classes: + (topics that were
trending at some point during the period of interest) and — (topics that were uever trending dwring the period of interest). We
posit that there are a number of distinct latent seuwrce signals in each class that account for all observatiorns in that class. Let us call
them ty,...,ts for + and qs,..., q¢ for —. Each chservation labeled + is assumed to be a noisy version of one of the latent sources
t1,..., tn. Similarly, each observation labeléd — is assumed to be a noisy version of one of the latent sources qy,...qe. We do not
know what the latent source signals are or even how many there are. We only know a stochastic model that relates an observation
to its latent source.

Let the observation s be the most recent N, samples of an infinite stream s.. of activity. An observation g is generated by u
latent source signal q according to the stochastic model

Pis gen_era.'r,ed by q) ocexp{—vd(s, q}) (L

where d is a symmetric, positive definite, and convex distance function (we used the Euclidean norm) and ~ is a scale parameter. To
determine whether the chservation belongs to + or —, we make use of a set of example, or reference activity signals R from + and
R.. from —. Under our model the observation must belong to + if # has the same latent source as one of the reference signals in
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Figure 1: Left: Reference signala from each class, Right: Finding the latent source signal £+ that minimizes d{s,t;) + d(r,t;), l.e. the latent
source signal most kkely to have generated both s and r.
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Figure 2: Our method is capable of early detection of trending topics while maintaining a low rate of error and provides the Rexibility for
tradecffs between error types, : ‘ :

R+. Similarly, the observation must belong to — if it has the same latent source as one of the reference signals in R_. Hénce, the
probability that the observation helongs to + is :

B{+|8)Y= Z P(s belongs to +,s shares a latent source with r} = Z ZP(S generated by ty, v generated by t;)

TER rER L j=1 il
x 30 Sexp(—v(dls t) +din t)) 3 exp(»»_wgn(d(s,tj)+d<r,tf))) & 3 exp(-Crd(s,r)).  (2)
rE€R, F=1 rER X reER 4

The second to last approximation relies on the fact that for large enough «, the term with the smallest. exponent will dominate the
sum over the latent sources. For the last approximation, we observe that the global minimum of d{s,t} + d(r, t) over all signals t
i8 Cd(r, 8) for some C > 0 and is achieved at t* = {8 +r}/2. The approximation is valld when the mainimizing latent source tj» is
sufficlently close to the global minimizer t*. We approximate P(~ | 8} in a similar fashion. In essence; because the latent sources
are unknown, we cannot directly compare the observation with them. Instead we compare the observation to the reference signals,
using them as a proxy for the latent scurces. Figure 1 illustrates this. We classify the obseryation according to f(s) == sgn(R{s)—0),
where R{s) = P(-+|s)/P(—|s).and ¢ is a threshold. We can optionally require Doy consecutive “detections” to declare something a
trending topic. This approach has.an appealing interpretation: to classify an observation, one simply computes the distance from
the;, observation to all exaxx}ples from each class. This can be done in parallel on enormous data sets.

Resﬁlts and Conclusion

We collected 500 topics that were trending at some point during June 2012, and 300 that were not. We then collested 10% of the
Tweets from June 2012 contairing those topics, We used a 50 /50 split betwesn reference signals and observations and performed
detection in a window of size 2h,.; hours, centered around the true onset of the trending topic if the topic was trending or chosen
randomly otherwise. We performed detection for a range of parameters +, Novsy Bregy Nomootr, @ and Dyey to evaluate tradeoffs
between detection errors and relative detection time. Using thie small saruple of Tweets, our method is capable of detecting trends
in advance of Twitter 79% of the time, with a mean early advantage of 1 hour and 26 minutes, while maintaining a 95% true posilive
rate and a 4% false positive rate (Figure 2 (left)). Figure 2 (right} shows an example early detection in which our method .detected
the trending topic “Miss Rhode Tsland” over 2 hours in advance of Twitter, In Figure 2 (center) the envelope of ROC curves for
all combinations of parameters shows the ability of our method to perform well under a.variety of tradeoffs between. types of error.
It should be noted that Twitter’s trending tople detection method may need to be more conservative to avoid low-quality trending
topics, and that on T'witter, trending topies compete for the top ten spots, whereas our method is based on. a score threshold alone.
Nevertheless, our results demonstrate the effectiveness of our method for trending topic.detection, as well as its potential as a broadly
applicabile framework for scalable nonparametric classification in the presence of large amounts of data.
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Abstract

In mathematical models for social network analysis, links in the network often have positive
connotations, such as friendship, collaboration, information sharing, etc. However, nega-
tive interactions in social networks, such as antagonism or distrust, also play a key role in
both structure and dynamics of social networks and are receiving increased attention in the
literature [4, 8, 7).

The concept of structural balance is an old idea in sociology, tracing back to social psy-
chology research in the 1940s by Heider [5]. The theory begins with notions of tension and
balance in three-agent networks. Imagine that a person has two good friends who hate each
other. There is a tension in this situation that is resolved when either. the person takes
one side and ends the friendship with the other or when the feuding friends reconcile their
differences. Similarly, there is a tension amongst three people unfriendly with one another
that is resolved when two of them to form an alliance against the other. The theory was gen-
eralized to networks of » agents in the 1950s by Cartwright and Harary [3], who model the
network as a complete signed graph in which n vertices represent agents, a complete edge set
represent relationships amongst all agents in the network, with positive signs associated with
positive relationships and negative with negative relationships. They showed that n-agent
structurally balanced networks are those that can be partitioned into two factions, such that
within each faction all relationships are friendly and between factions all relationships are
hostile. The theory has found various applications, e.g. in models of international relations
(2], but has remained mainly static, focusing only on network structure.

Dynamic models for structural balance are quite recent and provide a new and interesting
perspective. They are particularly intéresting in light of new online networks that provide
real-world dynamical data for social networks with both positive and negative relationships.
For example, users on the product review website Epinions can display both trust and
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distrust of other users; on the technology news website Slashdot, users can designate other
users as either friend or foe; and on Wikipedia, users can vote for or against another person
becoming an administrator. The structure of such networks has been studied in [7, 8.

Suppose that a network is in an initial state that is not structurally balanced. How might
the state of the network evolve toward a structurally balanced state? Discrete dynamical
models, in which a relationship is either positive or negative, have been proposed in [1] and
(10]. In these models, the system evolves by flipping the sign on certain edges to increase the
number structurally balanced triangles in the network. However, these models suffer from the
existence of so-called “jammed states”, in which the system becomes stuck in structurally
unbalanced local minima. More recently, Kulakowski et al [6] and Marvel et al [9] have
proposed and analyzed continuous dynamical models, in which a real-valued “friendliness
level” is associated with each relationship (positive values indicate friendliness and negative
values indicate hostility). Collecting the friendliness levels in the network into a symmetric
matrix, the dynamic model is given by the matrix differential equation

X =X (1)

In this model, Marvel et al [9] show that for generic initial conditions, the system converges
to a structurally balanced state in finite time. Further, the final balanced state is determined
by the outer product of the eigenvector associated. with the largest eigenvalue of the initial
state matrix. . :

In this paper, we study external influence in dynamic models of structural balance. In
particular, we suppose again that a network is in an initial state that is not structurally
balanced and that a single agent can influence the state of the network (in an international
relations context, this might be due to certain foreign policy actions). We consider the
following problem: :

Problem 1. Given a symmetric matriz Xo, find, if it ezists, a symmetric matriz AXy with
entries equal to zero except for possibly the entries of the {-th row and the £-th column such
that ' '

vUF >0, Vi

where U is the eigenvecto% associated with the largest eigenvalue of Xo=Xo + AXy and v*
is o vector with desired sign pattern and entries of either 1 or —1.

We show that it is possible for a single agent to choose such a perturbation and achieve
any desired structurally balanced state given any initial state. ‘We also present a method
to compute and optimize the influence that is required to achieve the desired state. The
results are applied to structural balance in an international relations network, using data
from United Nations General Assembly voting records dating from 1946 to 2008 to estimate
friendliness levels amongst various countries. Our results give interesting historical inter-
pretations and provide guidance for how a country might optimally achieve certain foreign
policy goals. ' o
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Abstract:

As social networking sites such as Facebook and Twitter are becoming increasingly
popular, a growing number of malicious attacks, such as phishing and malware, are
exploiting them. Among these attacks, social botnets have sophisticated infrastructure
that leverages compromised users accounts, known as boss to automate the creation of
new social networking accounts for spamming and malware propagation. Traditional
defense mechanisms are often passive and reactive to non-zero-day attacks. In this paper,
we adopt a proactive approach for enhdncmg su.unty in social networks by infiltrating
botnets with honeybots. We propose an integrated system named SODEXG which can be
interfaced with social networking sites for creating deceptive honeybots and leveraging
them for gaining information from botnets. We establish a Stackelberg game framework
to capture strategic interactions between honeybots and botnets, and use quantitative
methods to understand the tradeoffs of honeybots for their deployment and exploitation in
social networks. We design a protection and alert system that intcgrates both
microscopic and macroscopic models of honeybots and optimally determines the
security strategies for honeybots. We corroborate the proposed mechanism with extensive
simulations and comparisons with passive defenses.
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Abstract— As social networking sites such as Freehook and
Twitter are becoming increasingly popular, a growing number
of malicious attacks, such as phishing and malware, are
exploiting them. Among these attacks, social botnets have
sophisticated infrastructore that leverages compromised users
accounts, known as bots, to antomate the creation of new soctal
networking accounts for spamming and malware propagation.
Traditional defense mechanisms are offen passive and reactive
ta non-zero-day attacks. In this paper, we adopt a proactive
approach for enhancing security io social networks by im-
filtrating botnets with honeyhots. We propose an integrated

system named SODEXQ which can he interfaced with soclal

networking sites for creating deceptive honeybots and leverag-
ing them for gaining information from hotnets. We estahlish a
Stackelberg game framework to capture strategie interactions
between honeybots and hotnets, and vse quantitative methods fo
understand the tradeoffs of honeyhots for their deployment and
exploitation in secial networks. We design a protection and alert
system that integrates both microscopic and macrescopic mod-
els of honeybots and optimally determines the security strategies
for boneybots. We corroborate the proposed mechanism with
extensive simulations and comparisons with passive defenses.

Keywords: social petworks; cyber security; game theory; bot-
net; malware propagation;-Stacketherg games

1. INTRODUCTION

Online social networks such as Facebook and Twitter are.

employed daity by hundreds of millions of users to commu-
nicate with acquaintances, follow news events, and exchange
information. The growing popularity of OSNs has led to a
corresponding increase in spam, phishing, and malware on
social networking sites. The fact that a nser is likely to click
on a web link that appears in a friend’s Facebook message or
Twitter feed can be leveraged by attackers who compromise
or impersonate that individual.

An important class of malware attacks on social networks
is social botnets {17, [2]. In a social botnet, an infected user’s
device and social networking account are both compromised
by installed malware. The compromised account is then nsed
to send spam messages to the user’s contacts, contaiming

links to websites with the malware executable, As a result,

compromising a single well-connected. user couvld lead 1o
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hundreds or thousands of additional users being tarpeted
for spam, many of whom will also become members of
the botnet and further propagate the malbware. The most
prominent example of a social botnet to date is Koobface,
which at its peak had infected 600,000 hosts [1].

“Current methods for mitigating malware, including social
botnets, in social networks are primarily based on URL
blacklisting. In this defense mechanism, links that are -sus-
pected to contain spam or malware are added to a centraiized
blacklist controlled by the owner of the social network, After
a link has been blacklisted, the social networking site will
no longer commyunicate with the IP-address indicated by the
link, even if a user clicks the link [3].

While blacklisting can slow the propagation of malware,
there remain several drawbacks to.this approach. First, auto-
mated methods for blacklisting links often fail to detect spam
and malware; one survey suggests that 73% of malicions
links go undetected and are not added to the. blacklist [4].
Second, avtomated blacklisting creates the risk of valid
accounts and messages being classified as spam, degrading
the user experience. Third, even for links that are correctly
identified as pointing to malware, there is typically a large
delay between when links are detected and blacklisted. One
study estimates this delay as 25 days on average, while at
the same time most clicks on tnafware links occur within the
first 48 hours of posting [5].

A promising approach to defending against social botnets
is throngh deception mechanisms. In a deceptive defense, the
defender generates fake social network profiles that appear
similar to real profiles and waits to receive a lnk to malware.
The defender then follows the link to the malware site,
downloads the malware executable, and tuns it in a quaran-
tined, sandbox environment, By posing as an infected node
and interacting with the owner of the botnet, the defender
gathers links that are reported to the blacklist either before
or shortly after they are posted, reducing the detection time
and increasing the success tate. Currently, however, there is
no systematic approach to modeling social botnets and tle
effectiveness of deception, as well as designing an effective
strategy for infiltrating the botnet and gathering information.

In this paper, we introduce an analytical framework for
SOcial network DEception and eXploitation through hOn-
eybots (SODEXO0). Our framework has two components,
deployment and exploitation. The deployment compenent,
madels how decoy accounts are introduced into the online
social network and gain access to the botnet. The exploitation
component characterizes the behavior of the decoys and the-
botnet owner after infiltration has occurred, enabling us to
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model the effect of the decoy on the botnet operation.

For the deployment component, we first develop a dynam-
ical model describing the populaton of & social botpat over
time. We derive the steady-state equilibria of .our model and
prove the stability of the equilibiia. We then formulate the
problem of selecting the optimal number of honeybots in
order to maximize the information gathered from the botnet
as a convex optimization problem. Our tesults are extended
to include networks with hetetogeneous node degree.

We model the exploilation of the boinet by the honey-
bots as a Stuckelberg game between the boimaster and the
honeybots. In the game, the botmaster allocates tagks, such
as spam message delivery, among muiliple bots based on
their trustworthiuess and capabilities. The honeybots face a
trade-off between cbtaining more inforination by following
the commands of the bolmaster, and the impact of those
conunands on other neiwork usezs, We derive closed forms
for the optimal sirategies of both the botmaster and hon-
eybots wsing Siackelberg equilibrium as a solution concept.
‘We then incorporate the utility of the honeybot owner under
the Stackelberg, equilibrinm in order to select an optimal
deployment strategy.

The paper is orpunized as follows. The related work
is reviewed in Section II. In Section III, we describe the
architecture of our proposed framework for deceptive de-
fense. In Section IV, we model the exploitation phase of the
botnet, in which the honeybot gatliers the maximum possible
informaijon while avoiding detection by the botmaster. Tn
Section V, we model the deployment and population. dy-
namics of the infected nodes and loneybots. Section VI
describes the Protection and Alert System (PAS), which
provides a unifying framework for conirolling deployment
and exploitation. Section VII presents our simulation results.
Section VIH concludes the paper,

II. RELATED WORK

Social botnets are becoming a serious threal for network
users and managers, as they possess sophisticated infras-
tructure that leverages compromised users accounts, known
as bots, to automate the creation of new social networking
accounts for spamming and malware propagation [2).In.[6], a
honeypot-based approach.is used to uncover social spammers
in online social systerms. It has been shown that social
honeypots can be used to identify social spanuners with low
talse positive rates, and that the harvested spam data contain
signals that-ave strongly -correlated with observable profile
features, such as friend information and posting patterns. The
goal of {6], however, is not to infiltrate the botnet, but to
ude honeypots to differentiate between real and spamn online
profiles.

In [4], a zombie eimudator is used to infltrate the Koobface
botnet to discover the identities of frasdulent and compro-
mised social network accounts, The authors arrived at the
conclusion that “to stem the threat of Koobface and the
rise of social malware, social networks must advance their
defenses beyond blacklists and actively search for Koabface
content, potentially wsing infiliration as a means of early
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Fig. 1. System architecture of honsybot deceptive mechunism in social
nefworks

detection” This insight coincides with our proactive ap-
proach for defending social networks using deceptive social
honeybols. =

Deception provides an effective approach for building
proactively secure systenis 7], [8]. Considerable amount
of work can be found using deception for enhancing cyber
securily. In recent literatare on intrusion detection systems,
honeypots have been used to monitor suspicious ntrusions
[91, [10], ard provide signatwes of zero-day attacks [L1]. In
{12], to enhance the security of control systems in critical
infrastructure, deception has been. proposed fo make the
system more difficalt for attackers to plan and execute
successful attacks. At present, however, there has been no
analysis on the impact of deception on malware propagation
in social networks.

In order to establish a formal method to evaluate the
performance of deceptive sotial hoheyhots against botnets,
we employ a game- and system- theoretic approach to model
the strategic behaviors of botnets and the deployment and
exploitations of honeybots. Such approaches have become
pivotal for designing security miechanisnis in a quantitative
way [13]. In [14], an optimal controf approach to modeling
the maximum impact of a malware attack on a communica-
tion network is presentcd. In [£5], the authors have proposed
an architecture for a collaborative intrusion detection netwark
and have adopied a game-theoretic approach for designing a
reciprocal inceniive compatible resource allocation compo-
nent of the system against free-rider and insider attacks.

III. SYSTEM ARCHITECTURE

In this section, we introduce our honeybot-based defense
system named SODEXO for protecting social networks
against malicious attacks. Fig. 1 illustrates the architecture
of SODEXO. Our [ramework consists of two components,
namely, honeyboi deployment (HD) and honeybot exploita-
tion (HE). HD' deals with the distribution of honeybots within
social networks and the deception mechanisms to infiltrate
the botnet to léarn and monitor the activities in botnets.
HE aims to use the successfully infiltrated honeybots to
collect as muich information as possible from the botnet. The
behaviors of the two blocks are coordinated by a Protection
and Alert System (PAS), which vses the gathered information
to generate real-time signatures and alerts for the social
network (Fig. 2).
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Fig. 2. Architectire of the protection and alert system

The introduction of honeybots into a social network allows
a proactive defense and monitoring of the social network
againat boinets. The SONEXO architecture hears its resem-
blance. to feedback control systems. The HE component
behaves as a security sensor of the social network: PAS can
be seen as a controller which takes the “measurements™ from
HE and yields a honeypot deployment strategy; and HD- acts
as an actuator that updates the honeypot policy designed by
PAS. In the following snbsections, we discuss in detail each
component of SODEXC.

A. Honeybot Deployment (HD)

A honeypot is deployed by first creating an account on
a social networking site. The accounnt profile is designed to
imitate a real user, as in [6]. Once deployed, the honeypot
sends a set of friend requests to a set of randomly chosen
other users. The honeypot continucs sending friend requests
to random users until the desired number of neighbors,
denoted 4, has been reached. The honeypot monitors the
message traffic of its neighbors, which may include personal
messages, wall posts, or Twitter feeds, and follows any
posted link. If the link points to malware and has not been
blacklisted, then the honeypot becomes a member of the
social botnet and proceeds to the exploitation stage.,

B. Honeybot Exploitation (HFE)

The HE component of SODEXO takes advantage of the
successfully infiltrated honeybots to gain as much infor-
mation as possible from the botnet. The information is
obtained in the form of command and control messages. The
honeybots need to gain an appropriate level of trust from the
bots and respond to the C&C messages while minimizing
harm to the Jegitimate social network users and avoiding
legal liability. Honeybots work collaboratively-to achieve this
goal, In the case where honeybots are commanded. to send

spam or malware to nctwork users, they ¢an send them to.

each other to remain active in the hotnet. Depending on
the sophistication of the botnet, honeybots can sometimes
be detected vsing mechanisms described in [16], [17]. In
this case, a higher growth rate of honeybot population will
be needed to replace the detected honeybots. Hence, the
performance of HE heavily depends on the effectiveness of
HD, and in tum, HD should change its policy based on
the sophistication of botnets and the amount of information
leamned in HE.

C. Protection and Alert System (PAS)

The major role of PAS is to provide security policies
for HD based on the information learned from HE. Fig. 2
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illustrates two major functions of PAS. The first step of PAS
is to process the messages and logs gained from honeybats.
Using data mining and machine learning techniques, it is
possible that the structure of botnets can be inferred from
network traffic information [18] and botnet C&C channels in
a local area network can be identified {19]. These information
can be used by the network administrator to detect the
location of botmasters and remove them from the network.

The second important task of HD is to generate sipnatures
for detecting malware and spam, which are then used 1o
update the libraries of intrusion detection systerns, blacklists
of spam filters, and user alerts or recommendations. The
process of reconfiguration of IDSs and spam filters can be
done: either offline or real-time as in [20] and {21].

D. Botnet Propagation Model

Fig. 3 illustrates a mechanism used by botnets to infect
social network users, which has been found in the Koobface
botnet [2], [4]. The botmet maintains a fixed domain that
bots or zombies regularly contact to report uptime statistics
and request links for spamming activity, The bots aim to
obtain fresh user accounts .and send malicions messages.
The Dot messages contain a malicious URL obfuscated
by shortening services such as bitly or wrapped by an
innocuous website including Google Reader and Blogger.
Clicking on the URL of these messages eventually redirects
to a spoofed Youtube or Facebook page that attempts to trick
the victim into installing malware masquerading as a Flash
update, Unsuspecting uscrs become infected by clicking on
these messages. Infected users are recrvited to spamr their
own social network friends, leading to a wide propagation
of mahware within social network users.

Once a user has been compromised, it makes frequent
attempts -to connect with one or more command conirol
(C&C) bots to retrieve commands from the botnet for further
actions. These commands are usually issued from another
compromised computer for the purpose of concealing the
botmaster’s real identity [16], leading to a hierarchical botnet
architecture. Fig. 4 illustrates the structure of a typical botne,
where a single botmaster sends messages to two C&C bots
and then they send to bots.

IV, SYSTEM MODEL FOR HONEYBOT EXPLOITATION

In this section, we infroducc a system model for hierar-
chical botnets and employ a Stackelberg game framework
to model the interactions between the botnet and infiltrating
honeybots.
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A. Theoretical Framework

Consider a botmaster B that sends requests to a set of C&C
bots A = {1,2,--- ,m} with m=|.#|. Each C&Cbot i € .4
sends comimands to a set of comproinised bot nodes % with
r = |A#]. We assume that the botnet is a three-level tree
architecture and, without loss of generality, we can assumc
Nie.g-¥ =9 since a single bot controiled by multiple C&C
bots can be modeled using multiple duplicate bots. Let H be
a honeybot that communicates with node i € ., i.e., H €4,
We assume that all honeybots work together as a team, and
hence one honeybot node H under one C& C subtree can
conceptually represent. & group of collaborative honeypots
who have succeeded in infiltraling the same botuet,

We let p;; € Ry be the number of messapes or conumands
(in bytes) per second sent froin C&C bot { to bot riode & .
Likewise, p;; denotes the number of response messiges per
second to C&C node i € .47 from node j& 4.

Bach C&C node i maintains a trust value T; € [0,1]
associated with a bot or honeybot node j€ .4;. The (rusi
values indicate the quality of fesponse and perfornance
of bot nodes. The trust values also inherently model the
deteclion mechanisms in botnets, which have beeit discussed
in [16], [22]. For botnets with -such mechanisms, low trust
values indicate the inefficiency of a bot or a high likelihood
of being a honeybot. For those without such mechanisms,
we can take T;; =1, for all j € %, ie., equivalently seeing
all bots are all equally trusted.

One- C&C bot needs to send commands to a large pop-
uvlation of bot nodes. Hence, the goal of C&C bot i S .4
is to allocate its communication resources p; i=[p;j; j € ]
to maximize the wtility of its subtree network Us : RY - R,
which is the sum of utilities obtained [rom each bot f, ie.,

Upy= Y, Uiy, (0
jeA
where U;; : Ry — R is the individual utility of C&C bot i
from bot j € .#, which is chosen to be
Uijlpij) = Tpjin{oapi; + 1) 2
The-choice of logarithmic function in (2) indicates that the
marginal utility of the C&C bot diminishes as the number of
messages increases. It captures the fact that the bots have
Himited resources to respond to commands, and a larger
volume of comimands can overwhelm the bots, whick leads to
diminishing marginal utility of node i. o; € By is aposilive
system pazameter that determuines marginal utilicy.

The utility of C&C bot i is also proporiional to the number
of messages or responses per second from bot j, indicated
by pji € Ry. The number of response messages from bot j
indicates the level of activity of a bot. We can see that when
Pji=0or Tjy=0 in (2), then bot i is believed to be either
inactive or fake, and it is equivalently removed from the
subtree of C&C node j in terms of the total utility (1}. Note
that 7;; in (2) evaluates the quality of the responses while p ji
cvaluates the quantity. The product of Tj; and pj; capiures
the fact that the botnet values highly active and wrusted bots.

We consider the following C&C bot optimization problem.

(BOP) of every node i € .4

(BOP) max Uy i=%;c 4 Tjpjiln(ospy;+1)
pERY -
st

@)

The consiraint (3) in (BOP) is a capacity constraint on the
comumunications using C&C channel, where C; is the total
capacily of the channel. The cost ¢ty € Ry is the cost on
sending commands to bots. The cost is also dependent on
the size of messages from C&C bot i to its controlled bots.
It has been found in [4] that Twitter has larger volume of
spam messages than Facebook. This is due to the fact that
Twitter messages are often shorter than facebook messages,
and hence the cost for commanding bots spamming with
Twitter messages is relatively less than the one for Facebook,

Let & := {p: e RT: Zjcscijbij < Ci} be the feasible
set of (BOP). We let % R xR~ R be the associated
Lagrangian defined as follows:

e Ciipij < Cu.

R IHERY ﬁjpjxln(aipij+1)+3«'(

¥ ciipij- Cﬁ)
JeA

jEA;
(4}

Since the feasible set is nonempty and convex, and the
objective function is convex in py, it is clear that (BOP)
is a convex prograni, and hence we can use the first-order
optimality condition to characterize the optimal solution to
{BOP):

3.4 Ty
= ¥ SR gy =o, s)
Dij Jeu a:sz +1
which leads to o T, ! ©
Pi= " Ry @

Due to the monotonicity of logarithmic funclions in (2), the
optimel solution is found on the Pareto boundary of feasible
set. Hence by letting 3,5 s ;i =C;, we obtain Lagrangian
mulfiplier A; from (6) as folows.
P TienmTipji
Cit 2 Z e Cj
We. make following assumptions before stating Theorem 1.
(A1) The product Tjjp;; # 0 for all j €.4,ic #.
-Assumption (Al) states that all bots controiled by C&C
bot i are both active and irusted, This assuinption is valid
because for a controlied bot f that is-either inactive (p; i=0)
or untrusted (T;; = 0) can be viewed as the one excluded
from the set 4, Hence Assumption (A0) is equivalent to
the statement that .47 contains all active and trusted bots.
Theorem 1: Under Assumption (Al), (BOP) admits a
unigue solution when o5 is sufficiently large.
Ci+ é‘i‘Z-je.Ag Cij 1

Tipji )
= . ®
i (Z;ewi Lipji 0
Proof: Assumption (A1) ensures that {BOP) is strictly

convex in p;; for all j € .4 Hence the result follows directly
from (6) and (7). Since ¢y is a system parameter, we can
choose oy sufficiently large so that the solution obtained in

M

Cg_,'
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(8) is nonnegative. ]

B. Stackelberg Game

In this section, we formulate a two-stage Stackelberg
between honeybois and C&C nodes. Honeybots behave as
leaders who can learn the behaviors of the C&C bots once
they succeed in infiltrating the bomet and choose the optimal
strategies to respond to the commands from C&C bots.

The goal of honeypots is to collect as much information
as possible from the botmaster. We consider the following
game between honeypots and a C&C bot. The honeypot node
H firsts chooses a responge rate pgy; to the commands from
C&C bot i, and then C&C bot. i observes the response and
chooses an optimal rate to send information to heneybot [
according to (BOP). We make the following assumption on
the real bots in the network.

(A2) The real bots arc not strategically interacting with the
C&C bot i, i.e., they send messages to bot { at a constant
rate pyj, j# H, j € M.

The above assumption holds because bots are non-tuman
driven, pre-programmed to perform: the same routine logic
and communications as coordinated by the same botmaster
[191. Under Assumption (A2), the strategic interactions exist
only betiveen honeybots and C&C nodes.

The honeypot node H has a certain cost when it responds
to the botnet. This can be either because of the potential
harm that it can cause on the systemn or due to the eost of
implementing commands from the botmaster. We consider
the following honeypot optimization problem (HOP), where
node [T aims to maximize its utility function Uy : By x R —
R, as follows:

(HOP) max  Un(pu, i} = Wn{pasr -+ &) — B paas,
PHiEFn )

where £y € Ry is a positive system parameter; 87 is the
cost of honeybot H responding to the bot node #; pyy; is the
message sending rate from honeybot node H to C&C bot §
and pyy 18 the rate of C&C bot { sending commands to H.

Fy denotes the feasible set of the honeypot node H. We
let Py = {pni,0 < pai < pHimax}, Where primas € Ry y is
a positive parameter that can be chosen to be sufficiently
large. The logarithmic part of the utility function (9) is
used to model the property of diminishing retnrns of an
information source. The value of recciving an additional
piece of information from the C&C bot decreases as the total
number of messages received by the hongypot increases.

The interactions between honeypot H and C&C node
i can be captured by the Stackelberg pame model Zg 1=
(2, H), (Ui, Unr), (F;, Fir)}, and Stackelberg equilibrium can
be used as a solution concept to characterize the outcome of
the game.

Definition 1 (Stackelberg Equilibrium): Let
my()  RY = Ry be the unigue hest tesponse of the
C&C bots to the response rate py; of the honeypots.
An actien profile (pf, py;) € Fix Py is a Stackelberg
equilibrium if pf = Ry (pfy), and the following inequality
holds Up{mar{piy), Pin} 2 Un(mia (pans), pri), Vpwi € Fr.

Theorem 2: Under Assurmnption (Al), the nonzero-sum
continnous-kernel Stackelberg game Eg admits-a Stackelberg
equilibrium,

Proof: The utility function of C&C bot { is strictly
convex for all pg; # 0 under Assumption (Al). Since Fy
and #Fp are compact sets; by Corollary 44 of [23], the game
admits a Stackelberg equilibrium solution. ]

Under Assumption (A1), the unique best response mz{-)
can be obtained from (8) for sufficiently farge o as foilows:

Ty pyi ) 4
Tpmi+ g o’
where Ly = Yy e 4 Tijpji is the mumber of responses

from real bots weighted by their trust values and Cy =
C£+%Eje.,/f§¢ij .

pirr = T pui) =Cy ( 9

Cif _
Letting & = 1 /054 &y and substituting (9) in (HOP), we
arrive at the following optimization problem faced by the
honeybot node H:

max Ug(mw(pm), pim) =
PHIEFH

T pui ) E H
In(Cyl{ —222 ) 485 - Bfpw. (10
n( H(TfHPHi'i‘I—H ) =B pm. (10)

Theorem 3: Under Assumptions (Al) and (A2), the
Stackelberg equilibrium soltion (p}, p};) of the game Hg
is unique and can be found as follows:

—_— Crl.y T (Cu + &) _
Pt = TlCu v 5 | \/ S e !
un
Gt an

and py = ma(pyy) and pi; = mij(pi;) for j#H, j € .

Proof: The problem described in (13) is a convex
program with the uiility function Uy convex in prn and
convex set &. Hence the first-order optimality condition
yields

Cyl_yTyr =
BE(I s+ pris Ty (Corpui Tt + (g + pri T )y, a2

which is a quadratic equation to be solved for py; and its
nenncgative solution of (12} is given in {11). Since pyyman
is chosen sufficiently large and (11) is non-negative, pfy, is
a feasibie solution. The equilibrium solution for bot { hence
follows from (9). B

In order to provide insights into the solution obtained in
(11), we make the following assumptions based on common
structures of the botnets,

(A3} The real bots comtrolled by C&C bot i have identical
features, ie., ¢y =&, py=7 and T; =T; for all j#
H,j&g A

(Ad) The size of the real bots controlled by C&C bot { is
much larger than the size of honeybots.

(AS5) We let & =0. _

Assumption (A5} is valid due to the freedom of choosing
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parameter &H in (HOP). Without loss of generality, we can
let &g = E;’ and hence &y = 0. Assumption (A3) holds if
real bots controlled by C&C bot i are of the same type, for
example, Windows non-expert Facebool users. These type
ofusers are commonly the target of botuets. Under (A3) we
can sxmphfy the expressions in (11) and obtain Cy = —l + B,
_g=n; BT 5.

Absumpnon (A4) is built upon the fact that one C&C
node in botnets often controls thousands of bots and the
size of honeybots are often comparably small duc to their
implementation costs [24]. Under (A2), we have Iy >»
puiTw, then (13} can be rewritten as

L o Prrrs .
Un{mim(pas), pr) = n (CH (-i}q—p}?) +§H) ~ B pa.
(13)
Corollary 1: Under Assumptions (AT), (A2) and (A4),
the Stackelberg equilibrium solution (pf, pj;) of the game
Ey is given by
L yy

1 +
A . . S
' (»ﬂH CHT}H+T;'H§H)

where ()" = max{0,-}; ply = min(p}y) and pf; = m;(pij)
for j# H,je .

Proof: From (A4), we can rewrite (12} by replacing
I g+ puiTiy with I_ g, Since all the terms in (14) s bounded,
we can let py; max be sufficiently large and arrive at (14). The
result then follows from Theorein 3. B

Coroflary 2: Let the size of real bots under C&C be nf

and the size of the honeybots represented by super node H

# 'Note that n; = af +nil. Under Assumptmm (A1) - (AS),
T.he Stackelberg cqulhbnum of the game Eg is given by

aH?

7 (Pij)s
1, _

for j# H, j € ¥, and the equilibrium solution of C&C node
i is composed of two terms gm:n by Pl =Py st Pl s Wit
the first term independent of nff

(14

Pai= pij= (15)

Ty o nﬂ) 1
i ————re— [ — 4 -, i6
pr,.S‘ TH+ﬁtH Eﬁpz (Cz o o ( )
and the second term dependetit on af,
o
" ;T

1§ e — 17

Pirs = 5 P 7

Proagf: The result m:medlately follows from Corollary
1 using (A3) and (AS). B

Remark 1: From Corollary 2, we can see that undét As-
sumption (Al), the equilibrium respotisé stralegy is inversely
proportional to the unit cost §# . We can see that the nugmber
of command and control messages hatvested from the botnet
iy affine in the number of successfully infilirated honeybots.
The growth rate of the nuinber of messages is given by

.
'r;xf::gpigm = Bﬁl_{ :

ng  PiniTpi+ T

The growth rate is dependent of the trust value Tjy. Honey-
bots can harvest more information from the bomet if they

(18)

Hofybols

Bot

‘Bot

Bot
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Fig. 4. Mustration of a-hieraichical social botnet

are more (rusted. The growih rate is also ‘dcpcndent on the
fumber of the real bots controlied by C&C bot i, As n —+ oo,
the growth rate rfy; — 0, ic., size of honeybots will not affect
the number of messages received by the network,

‘Trust values can chaige over lime and can either modeled
by a random process or by some assessinent rules adopted by
the attacker. We can separate this into different subsections
of discussion. We can also consider a dynamic optimization
problem as well by having bélieffirust as the state. This can
be done through using beta or Dirichlet distribulions.

V. MODEL OF HONEYBOT DEPLOYMENT AND BOTNET
GROWTH

In what follows, a macroscopic model of the dyiamics of
the number of bots at tiime ¢, denoled x; (r), and the number
of hozeybots, denoled x3{r), is presented. We then formulate
an oplimization problem for determining the fumber of
hongypot nodes to introdice inio the netwark.

A. Botret and honeypot growth models

The bots are assumed to send spam messages, containing
links to malware, with tate r. Each message is sent to cach
of the d neighbors of the bot, where d is the average node
degree. Hence in ¢ach time interval de, rd dt spam messages
are sent. Since the. number of valid nodes is N - x(z),
the number of messages reaching valid nodes is equal to
raY gy,

The number of nodes that become bots depends on the
behavior of the valid users and. the number of links that
have been blacklisted. Each uset clicks on a spam link with
probability g. If the link has been blacklisted, then the user
will be blocked. from visiting the infected site; otherwise, the
user’s account is compromised and the device becomes part
of the boluet.

To determine the probability that a link has been black-
listed, we assume that each bot is independently piven a set
of k malicions links, out of M links total. The probability
that a g;ven link has been given o a specific honeybot is
therefore & X Hence the probability that a link has not been
Dacklisted is the probability that that link has not been given
to.any heneybot, which is equal to (I - ~—) . We assume
that!

(A6) The number of Hinks given to each honeybot, k, satisfies
k<M.
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Under (A6), (1~ ﬁ)xz can be approximated by gl - %’)
Finally, we assume that the infected devices are discovered
and cleaned with rate f1;. This leads to dynamics

ko YN —
x1 () = rdgxy (I - —%) M JUEB

M N (19)
Honeybot nodes are inducted into the botnet in a similar
fashion. We make the following assumptions regarding the
honeybot population:
(A7) The number of honeybats that are not part of the botnet,
denoted z, is constant.
{A8) The number of honeybots is small compared to the total
number of users, so that z—JfN Rk
Assumption (A7) can be gunarantced by creating new, un-
infected honeybots when existing honeybots infiltrate the
botnet. As with real wsers, hioneyhot nodes cannot follow
links that have been blacklisted; hawever, unlike teal users,
honeybot nodes will atterpt to follow any link with proba-
bility 1. The botmaster detects and removes honeybots with
rate pip. The honeybot population is therefore defined by

o
JEQ(I) = r'dx; (1 - -ﬂ?%) % - Hax0. (20)

Proposition 1: The dynamics defined by (19) and (20}
have two equilibria, given by (x;,x;) = (0,0) and

X = NﬂzM(rdqm)ﬁll) e (rdm%)z (21)
VT rdgeMtrdkz’ P EE L,

Proof: Eguation (19} reaches equ%rium ifx; =0 or
it rdg (152 ) X8 — 1y = 0. If x; = 0, then (20) reaches
equilibrium when x7 =0, ]

If rdg (1 —%}) i‘ﬁl — iy = 0, solving for x; yields
x=N 1—@) . Substituting into {20) gives the
equilibrium of (21).

The quantity rdg corresponds to the rate at which new
nodes are inducted into the botnet, while y; is the rate at
which nodes are cleaned and exit the bomet. Thus if rdg <
{1, then the romber of bots converges o zero, while rdg >
41 implies that the number of hots converges to a ronzero
steady-state value.

Since network security policies are typically updated in-
termittently, while the dynamics of (19) and (20} converge
tapidly, we base our subsequent analysis on the steady-
state values of x; and xa, and derive the optimal number
of honeybots to introduce into the system in steady-state,
In order to prove that this problem is well-defined, we first
examine the stability properties of each equilibrium in the
following theorem.

Theerem 4 If p1; > rdg, then (xy,x2) = {0,0) is asymp-
totically stable. If py < rdg, then (x¥ x%) is asymptotically
stable in the limit as M —% o0, N —3 ce,

Froof: An equilibrivm point of a nonlinear dynam-
ical system is asyroptotically stable i jts linearization is
asvmptotically stable at that point [25, Theorem 3.7]. The
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" Hence —Ax»f x:

linearization of (19) and (20) around (0,0) is given by
rdg—t; 0 )
Ago = ' .
® ( 5%; —H

If 13 > rdg, then —Agy 1s diagenally dominant, and hence
has eigenvalues with positive real part [ref]. The eigenval-
ues of Ag therefore have negative real part, implying that
the linearization around (0,0) is asymptotically stable. The
lincarization A,,x around (x1,x3) is given by

a) a
At = B2 ) where
! az g

74
rdq (“2M+E‘q—)

an =M= N oM +rdkz

A—_n ﬁulrdkz+ paM
rdgioM +rdkzyt, |’

rdokN ( pirdkz+ oM )
a)p = — 1-

M rdqiis M+ rdkzil)
o Wrdkz+ oM
radguaM +-rdkziy )’
g o 1A (oM pukz/q
AN Mt rdiz

o _rdkz 1— Hrdkz+ M _
TN g+ raka, ) P

To prove that Az has eigenvalues with negative real part,
we examine _Ax}f%' The second row is clearly diagonally
dominant, since the diagonal element is positive and the
off-diagonal element is negative. The first row is diagonally
dominant if

_ rdgkN (1 - Hrdkz+ M Wrdkz+ oM .
M rdqup M+ rdkziis rdqi, M+ rdkziy
iz
f 1A+ 24 rdk: M
< i +rdg a  draztinM )
UM +vdkz  rdquoM -+ rdkziy

In the limit as M — oo, the left-hand side of {22) con-
verges to zero while the right-hand side reduces to py +
rdg (1 — rdzN) , which is positive for N sufficiently large.
is diagonally dominant, and therefore has
cigenvalues with positive real part, implying that (x],x}) is
a stable equilibrivm point. |

B. Comprutation of system parameters

The parameter iy determines the rate at which honeypot
nodes are discovered and removed by the botmaster, and
hence can be caleulated by observing the lifetime of deployed
honeypots (see Section VI). Similarly, the number of recejved

- messages p and the cost 7 can be estimated by averaging

over the set of deployed honeypots over time. The fraction of
malicious links M& that are given to a single bot or honeypot
is estimated by using the assumption that links are distributed
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independenily and uniformly at randein by the bolmaster, so
that the probability that a given link has been recejved by
a honeypot is {1~ £)™. This probability can be estimated
by analyzing the set of malicions links received by new
honeypots, whicl: combined with knowledge of x; enables
computalion of ﬂ%. The rate at which spam messages are scat
by bots, denoled 7, is estimated by the number of instruction
messages received by the hioneypots:

The parameters {i; and ¢, equal to the rate at which bots
are removed from the botet, and the fraction of malicious
links that are followed by users, depend on user behavior.
These parameters can be estimaled using existing data sets
of user behavior {26]. Furthermore, to obtain an upper bound
on the effectiveness of the botnet, the parameter g can be
set equal to 1, implying that a valid user always clicks any
link to the malware exccutuble (the worst case). The average
node degree, d, is estimated based on existing analyses of
the degree distribution of social networks [27}.

C. Extension to heterogeneous nelworks

Typical social networks follow a non-uniform degree
distribution. We present a model for the bot and honeypot
population dynamics as follows. Let Ny denote the total
number of users with degree 4, and let x¢(z) and x4(r) denote
the number of bots and honeypots with degree d at time ¢.
The average degree of e network is equal to 4. We ke
the assumption that: .

(A9} The average degree of the infected users is equal to the
average degree of the social neiwork as a whole.

The total number of spam messages sent by bots in time
intexval 4t is equal to rdx; df, each of whicl: has not been
blacklisted with probability (1.—- 2} The probability tliat
the recipient of a message has degrze o and has not been
infected is equal to
Nd“ff dNy (Nd—r‘f)d
Ny dN dN
This iraplies thal the dynamics of x¥(¢) are given by

6 = " (1——) Na—af) o, @23)

where N, is the number of user accounts of degree d.

Pr(degree d, not infected)} =

Similarly, the probability thai the recipient of a spam
message is a honcypot node of degree d that has not been
infected yet is X 7, where 25 is the number of honeybots of
degree d that have not joined the botnet, leading to dyaamnics
of x4(r) described by

. rd kx:
xg(t) = 'R}*.Il (1 - I’.’f—) Z; - }Lgxg.

Propositien 2: The dynamics (23) and {24) have equilib-

(24)

rium points at 1§ =x§ = 0 for all 4 and
krd, (1 - }%1;) T
rkzdy + po M rdg

krd, (1 — -r'%lq-) z
rhzd; + oM

-1

2 = |rdg {1~ | @5

_

‘dyg { 1~ =
! q. rdg

el krdyz (1 - -F-a) z m

L rkedz + 1M rdg
Proof: Summing (23) over 4 yields
xdr kx
X ()= 1N 4 (1 —ﬁ) (N =2} — pyxy,

which. Iimplies that in steady-state we have

vd

(26)

H

rdg (1 - %3)

Similarly, summing x4 (¢} over d results in

fx
(1 - ——2) wdz = iy,

T2

. L . . rdz
which combined with (27) gives x} = o

3 2
state value (26} can be oblained from (24). Similarly, x4 can
be obtained from (23). /]

=N[1- 27

TX
Ip(t) = Nl

. The steady-

VI. MODELING OF PROTECTION AND ALERT SYSTEM
(PAS)

PAS is a coordination syslem that strategically deploys
honeybots and designs security policies for social networks.
In this section, we focus on optimal reconfiguration of hon-
eybols as illustrated id Fig. 2. We iniroduce a mathematical
framewaork for finding honeybot deployment strategics based
on sysiem inodels desczibed in Sections [V and V.

A. Relations between HD and HE

We have. adopted a divide-and-conqguer approach in See-
tions IV and V, and have modeled the behavior of cach
system independently. However, ihe interdependencies be-
tween HD and HE are essenlial for PAS (0 make optimal
security policies for the social network. The HE model in
Section IV describes strategic operations of boneybots at a
inicroscopic level while the HD model in Seclion V provides
a macroscopic description of the population dynamics of bots
and honeybols. These two models are interrelated through
their parameters together with the feedback control from
PAS.

The Imeractions between bols and honeybots in the HE
model occur-on 4 ime scale of seconds. The analysis of
Stackelberg cquilibrium in Section IV capiures the steady-
state equilibrium after a repeated or Tearning process of the
game. Hence the equilibrinm can be reached on a time scale
of minutes. On the other hand, the population dynamics

56



Information Propagation, influence and Contral

in HD model evolve on a larger time scale (for example,
days). Hence, we can assume that the Stackelberg pame has
reached its equilibrivm when the populations evolve at a
macroscopic level. Decisions made at PAS are on a longer
time scale (for example, weeks) because the processing of
coilected information, learning of bots and honeybots. in
social networks, and high-level degision on security policy
in reality demand considerable amounnt of human resources
for coordination and supervision.

1} Trust Values and Detection Rate: The trust values Tj;
used in HE model are related to the macroscopic detection
and removal rate yy in HD model, As we have pointed out
earlier, zero trust values are equivalent to the removal of
honeybots from the botnet. Hence we car adopt a simple
dynamic model to describe the change of T;; over a longer
time period (say, days). We let T,g be the initial condition
of the trust value. The evolution of 7i; over the macroscopic
time scale can be modeled using the following ODE:

Ty(t) = —mT(r), Tyt =1) (28)

Note that honeybots have different initial time rO Hence
from (28), we obtain™

0
Ty(r) =D, 124

i @9
i.e., the trust values exponentially decay with respect to the
temoval rate. a threshold can'be get on, From (29), we can
obtain the mean life time of a honeybot is 1/ i3 . Macroscapic
parameter [y can be estimated by the rate of change of
working honeybots in ‘the botnet, which can is known to
the system, while T;; is a microscopic parameter and is often
unknown directly to honeybots. With the ODE model in {28),
we can use Hp to estimate. Tij.

2) Honeybot and Bot Populations: In Section V, the
populations of bots and infiltrating honeybots are denoted
by x1 and x,, réspccﬁvel_y, wliereas in Section IV, the bot
size under C&C bot is nf. Under a hierarchical structure
of botnet, illustrated. in Fig. 4, the total bot and honeybot
populations x;,xp are given by

zn,, xg_Zn

i=1

(30)

If all C&C bots are assumed to be 1dcnt1cal i, nf=nfie
i ?l =all i € 4, then x; = mAB andxl—mnH

3) Actzvzty Level of Bots: The rate p; in (18) indicates
the activity level of bots. when they respond to or poll
information from C&C node i. This level of activity is
often correfated with parameter #, the rate of sending out
spamming messages to the social network. Assume that ail
C&C bots are assumed to be identical, te., py= p,i € &,
then we can let 5 = o, where p is in megsages/sec, v is in
messagesfsec and ¢ € By is a unitless pogitive parameter.

B. Cross-Layer Optimal Honcybot Deployment

In what follows, we first derive’ the optimal honeybot
deployment when the benefit from each honeypot is: mea-
surable. We then combine the. analysis of Sections IV and
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V to determine the optimal honeybot deployment, taking
into account the behavior of the dcployed nodes during the
exploitation phase.

The goal of the honeypot operator is to maximize the
number of blacklisted links that are reported to the social
network. Based on the analysis of Corolary 2, we assume
that the number of blacklisted links is proportional to the
number of honeypot nedes in the botuet in steady-state, X3,
The variable is the number of honeypot nodes that have not
yet been inducted into the botnet, z. This leads o a utility

function given by Vi(z) == px}(z) — 7{(x% +z), where p and

7 represent the benefit (information gathered) and cost of
maintaining a single honeypot node. Substituting (21) yields

(o-8)e_((i-):
VH(Z)=P iz - i +z
']4“+‘u2 M +H
(p—‘.‘.') (rdf—%‘)z
= - 1z, (1)

%"‘Pﬂ

The value of z that maximizes (31) is given by the following
proposition,

Proposition 3: The optimum value of z is given by

o+ /(P —2)(rd — B ) /1
rdk

(32)

Proof: Differentiating Vy(z) with respect to z yields

E-i) Ha

(rd]cz+ “2)

By inspection, %—’f is a strictly decreasing function of z, so
that Vg{z) is strictly concave. Setting this expression equal
to zero implies (32). 4]

El/.{f_ (p—1) (rd—

dz

Remark 2: Eq. (32) has several implications for the de-
sign of honeybot systems. First, for malware that propagates
rapidly (corresponding to a large rd value), fewer honeybots
are needed, since the malware will quickly spread to the
deployed honeybot. Second,if s is large, then honeybots are
rapidly detected and removed by the botmaster, and hence
the cost of deploying honeybots outweighs the benefits.

The ulility function (31Y can be auginented by incorporat-
ing the impact on the exploitation phase. In particular, (18)
implies that p = H—pﬁ;;ﬁ, which we write as p =

IH
IF when the number of bots is sufficiently large. The utility

fllllCthIl Vi can then be written as

Vg = (E:Ef —m)xzm‘:z

An efficient algorithm for maximizing (33) can be derived
using the following theorem.

L~
Ee

(33

Theorem 5: The problem of selecting z to maximize Vg
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Fig. 5. Shmulation of cur framewark for 2 neiwosk of N= 106 users, whese ewch user has picbability g=0.01 of following a malicious link, message are
sent at a rale-of 0.4 messages per bot per day, and infected nodes are cleaned after S dayy on average. (a) Effect of increasing ithe numbez of Loneypol nodes
on ‘the' botnet population. Deploymeat of 2 small number of honeypots, can. greatly reduce the pumber of bots present. Note {hat the populaiion converges
quickly to it equitibrium value. (b) The opiimumn awnber of bats based on-(32) Bor ditferent costs v and beaedits p-'The total number of honeypois vemains
sihall for each case. (¢} Effect of degres disaibution on the bofnet population for nunber of boneypuls z= 5. Each network is scale-free, with exponent y
varying between neiworks. A higher conneciivity results in a larger number of bots.

in (33) is equivalent to

ax 1 rdg9? Mj4k
8528\ Nrdgd—[  N(rag (1 — %) — 1)

—Tx; — Tz, 34)
st. O —x*—'M
R T
kx5

o=1-=1, (35)

(e):
xS St (36)
R

1 rdgpaM + rdkapt

>1,
€ {rdg— p )M
220, 0<H <N,

which is a convex program.

Proof: The optimization problem of selecting z to
maximize Vy can be writien as

maximize (-mla- - 1:) x(z)— 1z
zeR,
1 ST — .

It e »«*F <0, thf:n the pbjecFWe function is monomrj.c
decreasing in z, leading to an optimal. value z = 0. To avoid
. N 1 - e i T .
this, we require =@ = 7T, leading to constraint {37). Using

(21}, we have

(37

i;,.w. (xﬁ—%i)rdq _rdg —-%(x‘—-%)z+%)
Exf mN(rd_q (1-—%) —,ul) B N(rdg (1— %z) "#1)

. 3
Substituting 8 = (xj — &) and ¢ = ( - ’;;I}) teads to(thf):

objective function

_ rdg8? M/4k
Nrdg—ti * N(rdg (1 - _k;;) ~ 1)

VH(X;,)Z: 93¢) = é-'

~TXy — 1T

Since guadratic over linear and inverse functions are convex,
the first two terms of (39) are concave, and hence Vi is

concave. :

Finally, the fact that the objective function is increasing
as a funciion of xj and decreasing as.a function of z implies
that the constraint (36) holds with equality at the optimum,
50 that the relationship between £ and z in (21) is satisfied.
This constraint is convex due to Proposition 3. |

The convex optimization approach presented in Theorem
5 is used to select a honeybot deployment strategy in order
to maximize the level of infiltration into the botnet and
the amonnt of data gathered during the exploitation phase.
Once inducted into the botnet, the honeybots follow the
Stackelberg equiiibrium&tmtegy of Section I'V and use the
collected data to generate malware signatures and create
URL ‘blacklists. The parameters of (33) are updated in
response to changes in botnet behavior observed during the
exploiation phase.

VII.) SIMULATION STUDY

We evaluated our proposed method using Matlab sim-
ulation study, described as follows. A network consisting
of N =10°% nodes was generaled, with degree d = 100
(consistent with observations of the average degree of social
networks [27]). The rate at which malware messages are
sent is given by r = 0.4 messages per bot day, and the
rate at which nodes are disinfected and removed from the
bainet is y; = 0.2, an average lifetime for each bot of 5
days. These statistics are based on the empirical observations
of [4]. Based on 5], we estimate that the probability of a user
clicking on a spam link is given by g==0.01. It is assumed
that the fraction of malware links given to cach bot is equal
to &/ M =0.01. The rate at which honeybots are detected and
removed is equal to pp = 0.5. 1 each case, we assume that
there ave 50 infected nodes and ‘0 honeybots present in the
network initially.

The population dynamics of the bots, described by (19)
and (20), are shown in Fig. 5(a). Each curve represents the
number of infected users over time for a different level of
honeybot activity, as described by the parameter z. In each

(39) 535, the number of bots coiverges to its equilibrinum value.

The top cirve (golid line) assumes z =0, f.e. no decep-
tion takes place and malicious links are deiected through
blacklists -oaly. Employing deception hiough honeybots
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significantly reduces the botnet population, even when the
number of honeybots is small relative to the population size,
As additional honeybots are added, the botnet population
continues to decline. However, the marginat henefit of adding
4 honeybot decreases as the number of honeybots grows
large.

The optimum number of honeybats depends on the cost of
introducing and maintaining honeybots, denoted 7, as well
as the benefit p from each honeybot, as described in (32).
The optimum nnmber of honeybots is given in Fig.-5(b).
As the cost of introducing new honeybots is reduced, the
optimal number of honeybots increases. In each case, the
optimum number of honeybots remains small, at around 23
nodes, relative to the total network population of 108 nodes.

The effect of a heterogeneous degree distribution s shown
in Fig. 5(c). The degree distribution was chosen to be scale-
free, so that the probability that a node has degree 4 was
proportional to 4~Y. Hence a higher value of ¥ corresponds to
a less-connected network, The parameter ¥ had a significant
impact on the rate of propagation of the botnet, even through
for the chosen values of y the average degtees of the three
networks were similar.

VIIL, CONCLUSION

In this paper, we studied the problem of defending against
social botnet attacks through deception. We considered a
defense mechanism in which fake honeybot accounts are
deployed and infiltrate the botnet, impersenating infected
users. The infiltrating honeybots pather information from
command and control messages, which are used to form
‘malware signatures or add spam links to URL blacklists.
We introduced a framework for §Ocial network Deception
and EXploitation through hOneybots (SODEXOQ), which
provides an analytical approach to modeling and designing
social honeybot defenses. We decomposed SODEXO into
deployment and exploitation components.

In the deployment component, we model the population
dynamics of the infected users and honeybots, and show
how the infected population is affected by the mumber of
honeybots introduced. We derive the steady-state populetions
of infected users and honeybots and prove the stability of
the equilibrium point. In the exploitation component, we
formulate a Stackelberg game between the botmaster and the
honeybots and determine the amount of information gathered
by the honeybot in equilibrium. The two components are
combined in the Protection and Alert System (PAS), which
chooses an optimal deployment strategy based on the ob-
served behavior of the botmet and the information gathered
by the honeybois. Our results are supported by simulation
studies, which show that a small number of honeybots
significantly decrease the infected population of a large social
network.
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Game in the Newsroom: Greedy Bloggers for Picky
| Audience |
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1. INTRODUCTION

We rely increasingly on social networks, especially mi-
croblogging sites like Twitter and Weibo, to diffuse news
information and inform our collective decisions, Every
now and then social media make the scoop — breaking
news is often tweeted beforé its widespiead diffusion —
and everyday they make news viral — go importantly
that media outlets like the New York Times allow for
unlimited access to articles from social medir. “Wéblogs,
originally & simple way to share recently viewed items
on the web, now exhibit the intriguing properties of
a global echo chamber that benefits everyone: Passive
users embrace such collaborative curation, as recent re-
ports showed that users landing on an article through
social endorsements generate more advertising revenue
through better engagement. A minority of contributors
rise to prominent level, some of them generating their
own advertising revenue as information hrokers.

A major algorithmic prohlem is whether such net-
works make the most of a critical scarce resource: users’
reading time. Indeed, intuitively the process of collabo-
rative curation is offering them a diversity of offers. In-
stead of reading the full length of news published on a
given topic, they can enjoy a selection, typically chosen
by someone else to be the most noteworthy. Such cu-
ration may encourage more users to follow online news,
and provide a potentially larger audience to each news
item depending on its perceived quality. This process
potentially increases online news audience and revenue.
Indeed, the bloggers who participate ini this curation im-
plicitly receive an incentive to improve the system; gen-
erating & larger audience for their tweet feeds and blogs,
even if they only serve ss intermediaries, puts them in
a strategic position and allows them to monetize their
traffic. Here we address the following challenge: can
the various interests of media outlets, blogosphere and
readership be aligned for efficient information filtering.
To initiate our study, we focus on a simple case where
all news items are related to the same. “topic”, but cov-
ers it with various relative degrees of depth. Our main
essumption is that users have different interdst thresh-
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olds that determine the set of news that they should
ideally receive. We present three main contributions:

¢ We analyze empirically ' million tweets collected
during one of the most active recent events of on-
line discussion: the death of Osama Bin Laden.
We exhihit and explain an apparent paradox: that
on a given theme, the most active or prominent
uzers tend to post articles that are less popular
than occasional tweeters. {Section 2)

e Motivated by the rationale of information filter-
ing, we propose a gnme representing strategic blog-
gers and readers with varying degrees of engage-
ment. We study how competition can lead to sta-
ble and efficient outcomes, proving that “greedy”
readers lead to instability but a bit of laziness on
the reader side can be sufficient to ensure stability
and efficiency. (Section 3}

& Motivated by theso preliminary results, we discuss
future steps to analyze and validate the processs
of collaborative news curation. (Section 4)

Our work follows the classic hypothesis.of a two-step
Bow of information [6], where opinion leaders that are
also news savvy play a key role of intermediaries. This

. study wes revived using empirical evidence of a sim-

ilar effect occuring on Twitter [8], and more recently
identifying mass media and intermediaries as critical to
information spread in general [3]. Much remains to be
explored to analyze the intrinsic effectiveness of such
information spread: a recent study showed that social
network allows users to be exposed to more diverse or
equilibrate viewpoints [1]. We wish to go a step further,
by proving that intermediaries emerge naturally from a
collaborative curation ecosystem and we aim at inform-
ing design of efficient incentives for such information
sharing systems. We are only aware of & few works an-
olyzing news dissemination with a game theoretic back-
ground. In [4], a different strategic news posting is ana-
lyzed. It assumes a fixed network of followers or friends
and the same interest perceived among users, proving
that local incentive are sufficient for higher quality news
to spread globally, but that this spread is limited when
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users attempt to avoid spam. In {5], a multi-topic model
is analyzed to model news aggregators chioosing a subset
of topies il & séquential game, We focus on information
filtering and how this affects the formation of the fol-
lower relationship. Previous works have analyzed how
to optimize attention for news, typically as a schedul-
ing problem in the face of ephemerality [2, 7], but they
typically consider the problem from the point of view
of a single media outlet.

2. INFORMATION FILTERING EVIDENCE

Data was gathered using DiscoverText.com to har-
vest tweets from the Twitter public APL This set con-
tains 1,977,716 tweets dontaining the words “Osama?
or “Bin Laden” posted on the night and following day*
after the raid of the U.8. Navy, Based on self-reported
nwnbers from twitter’s traffic at this time?, we esti-
mate thet this represents a sample of at least 5% of the
tweets generated during that period, These contain s
total of 950,950 unique URLs posted by 787,727 users.
We observe varying URL’s popularity (half of the URLs
were posted only once; a fow of them are present in a
thousand tweets; 835 were cited at least 100 times) as
well as Users’ activity (half of the users post only once;
two of them, both legitimate users, posted more than a
thousand URLs; 855 users posted a hundred URLs).

The main merit of this dataset is. that it deals with
ome particular topic while providing a dynamic range of
depth, from blackbuster URLs {e.g.; President Obama’s
speech video) probably of interest to everyone, to ob-
scure niche developmentsthat may only appeal to users
highly interested in following this event. One intuition
posits that promident or institutional bloggers {who
generally post more).are likely to select “good” content
and see their URLs posted more often. We see the exact
opposite: Figure 1 distinguishes URIs posted by users
with different activity levels and plots their distribution
popularity. We observe & smooth transition, in which
- URLs posted by usets who post less often are usually
more popular. Two possible effects may explain this ap-
parent paradox: (1) It might be that users behave the
same but those who are more active simply run. out of
popular content. A comparison with & null-hypothesis
model ~ where a user’s set of post is picked with the
same popularity distribution, but with different sizes
— proved that this depletion effect is too wesk to ex-
plain the observed trend. (2) Alternatively, it means
that users post URLs selectively, and that the ones who
post less typically favor URLs that are of broad interest,

This result motivates us to study how filtering emerges
and improves information sharing: In choosing who to
follow, & reader may actually decide the level of details
thet she will receive on this topic.

1[’10111 5/2/2011 at 3:30am EST to 5/3/2011 at 1:30pm EST.
twitter.com /tﬂltt@l’b(}ll]ﬂlb/btdtllb/ B5125115272249344
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Figure 1: Histogram of tweets popularity and
various posting activity levels. TFor' one given
theme, liere the death of Osama Bin Laden, the
less a uger twoet, the more it is, likely to share
popular URLs disproportionally.

3. MODEL

Recall that we focus om content on a single topic.
We assume that each item of content ¢ has an inher
ent quality g. € [0,1]. Ttems of quality 1 essentially
appeal to the entire population of consumers or users,
while items of quality & = 0 appeal to few users, those
high-information readers who are interested in almost
all information on a topic. More formally, each user u
hos o quality threshold § T, and is interested in exactly
the set of content items €, = {¢: ¢, > §,}. Thus, a
high-information user has a low quality threshold, while
& disenguged user {who is only interested in the most

‘important items) has -a very h]gh threshold. A user u

gets positive utility from reading an item in her content
set O, and negative utility from reading a low-quality
item not in C,. For now, we assume that any item in
C\ contributes +g to the utility of «, while an item not
in €, contributes —h to the utility.?

How do users find the content that they are interested

in? We posit that {nfermediaries (or bloggers) play a

significant role by filterihg: A user interested in a sub-
set of the items may choose to follow a blogger who
only posts about the more interesting items, instead of
directly reading a primary source such as & newspaper
{which probably produces much more content than she
would like). A blogger b performs this filtering role by

*One can consider several variante of this model: For in-
stance, the (positive or negative) utilicy might depend on
the qu.ahty of the item, not just oh whether it was above or
below the threshold g,. Suchb models have similar features
to the one discussed hera, *
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picking a threshold g,; he posts all articles with qual- -
ity at least g5. Thus, the set of items posted by b is
F, ={c: g. > @} Now, if user v “follows” blogger
b, the utility of w = [F, N Cy| - g — |Fy \ G| - b, where
the former term denotes the positive utility from those
articles posted by b that v is interested in, and the lat-
ter term denotes the negative utility from those items
posted by b which are below »'s quality threshold. The
strategic decision faced by bloggers is what threshold
to pick: If users are more likely to follow hloggers that
give them high utility, what posting threshold is likely
to maximize the number of followers of a hlog?

To understand how bloggers pick a posting thresh-
old, we study the geme where each blogger & decides
on his quality threshold g, arbitrarily to maximize his
audience.® In this game, which we refer to as the blog-
positioning game, the utility of a blogger is given hy
the number of users who choose to follow him (and not
other bloggers).

First, suppose that ench reader picksthe best blogger
(the one that gives her maximum utility among all blog-
gers} deterministically (in the case of ties, the reader
picks one of the best -bloggers uniformly at rendom). In
this setting we can prove the following result:

THEOREM 1. If each user picksthe blogger that maxs-
mizes her utility, the blog-positioning geme has no pure-
strotegy Nash Equilibrium,

We note that it is not really rensonable for bloggers to
implement mixed strategies {on one day, posting a lot
of content, and on the next day, being very selective) in
order to attract readers. Thus, the lack of pure-strategy
equilibrium points to a flaw in the model’s depiction of
reality. In the real world, it would be very expensive /
time-consuming for a reader to find the absolute best
blogger; further, it is also unrealistic to assume that a
reader would be able to accurately estimate her quality
threshold. For those reasons we study a second model
where readers satisfice: each reader picks a desired util-
ity level, and among all the bloggers that give her at
least this utility, she picks one uniformly at random.
Equivalently, one can think of the decision of reader
as follows: Given her quality threshold §, and & desired
utility level, there exists an interval (containing 3, ) such
that if & blogger picks a posting threshold in this inter-
val, he gives u at least the desired utility, Thus, each
reader defines an interval around her threshold, and she
picks a blogger uniformly at random from among thoge
who post in this interval. In this setting we can prove
that:

4Bloggers may wish to maximize other objectives, such as
the total number of pageviews on their hlog, from which
they derive advertising revenue. Similar issues arise, but we
do not describe them in this abstract.
®Note that we allow the bloggers to change their quality
threshold in response to the decisions of other bloggers.
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THEOREM 2. If users pick randomly ameng blogs that

gitve them sufficient wtility, the blog-positioning gome

has a pure-strategy Nash Equilibrium,

This theorem follows from the following ohservation:
we can (roughly speaking) model blogger dynamics as
a congestion game, where congestion represents compe-
tition hetween blogs for the same readership.

We also show that the existence of intermediaries
serves & valuable soclal function; in their absence, read-

«ers have no choice but to follow primary sources, which

may produce far more content than they are interested
in. Not only do bloggers filter content, by selfishly max-
imizing their follower counts, they ensure that (up to a
factor of two), almost as many readers as possible will
find a blog that gives them sufficiently high utility.

THEOREM 3. If users p;ck randomly among blogs that
give them sufficient wtility, the blog-positioning game
has Price of Anarchy equal to 2.

4. DISCUSSION

We believe our work motivates further investigation.
Validation: We work on strengthening our informe-
tion filtering evidence, especially according to other met-
rics of activity and popularity.

Readership bias: Lenient and equanimous users help
stabilizing the system, but how would a limited hias in
blog selection affect this property?

Bundling, Dynamicity: Blogs typically bundle top-
ics. together to attract users with diverse interest. We
believe our analysis of system efficiency extends to multi-
topics models and to account for information ageing.
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A Comparative Study of Geographic Routing in Social Network Based on Mobile
: Phone Data :
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Understanding the prineiples driving the organization
of complex systems is cruclal for a broad range of Gelds
such as,. information and social acicaces, economics and
biology. In nelworks representing complex systems where
their nodes are defined on geographic positions, spatial
constraints may have a strong effect on the connedtivity
patierns, Links may either be spatially embedded, such
a8 in roads or railway lines in transportation networks,
or abstract entities, such as collaborution or fiiendship
relations in social networks. In éitlier case, space plays a
crucial role in the network connectivity and its structure.
In this work we focus on the atudy of social networks ex-
tracted from mobile photie data. The data has been fil-
tered in such a way that the nodes are mobile phone users
and the links repregent a social interaction that indicates
an acquaintance or a friendship as opposed 1o just ai oc-
cagional phone call. This is possible becsuse our current
data spans over a period of at least six months in sach of
the countries we study (displayed in in Fig. 1).

The idea behind this work is based on the faunous sinall-
world experiinent performed by the social psyehologist
Stanley Milgram {1] in the 1960s. Milgram’s experiment
really led to two striking discoveries, of whichi the exis-
tence of short paths between two randonly selected peo-
ple in a country, was only the first. The secoud was that
people in sodety, with knowledge of only their own per-
sonal acquaintances (Jocal informatiorn), were collectively
able to forward the letter to-a distant fargel swiprisingly
fagt, That such a decentralized routing scheme is effec-
tive suggest shiort paths in the wnderlying social network.

Many interesting questiohs remain open in relation to
Milgram’s, experiment, such as why should a soclal net-
work contain such short paths and how people are able to
select among hundreds of acquaintances the correct per-
son to form the next link in the chain. To answer these
questions several works have been carried out, both em-
pirically and mathematically. Dodds et al. [2] repeated
Milgram®s experiment at large scale with e-mails, provid-
ing confirmation that geographical position of the nodes
has 2 cricial folé in the possibility of the network to be

* Email: carloshy@mit.edu
Permanent address: Universidad Politenlea de Madrid, 25040
Madrid, Spain

* Permanent address: Grupo de Sistemas Complejos, and Depar-
tamento de Fisica y Mecinica, Escuela Técnlea Suparior de In-
genieros Agronomos, Universidad Politécuice de Madrid, 28040
Madrid, Spain
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Figure 1. The spatial disfribution of several tlicusand mo-
hile phone towérs over three countries, which are used for

‘the Miligram experiments on top of the social nebwork created

with billions of phone calls.

searchable, On'the other hand, Lieben-Nowell et al. [3]
broved a simple geo-greedy algorithm is able to efficiently
route a message between differont cities using the social
networlk, with data from an online blog cominunity where

‘usérs declare the city where they live.

Watts and Strogatz [4, 5] proposed & hierarchical net-
work model that present the small world effect and high
clustering. Kleinberg [6] has proposed several analytical
treatable netwerk models capabla of finding short paths
with high probability. He studied search algorithms in a
graph where nodes are placed on a two-dimensional (2D)
lattice with a fixed number of links whose placement is
correlated with lattice distance to the other nodes. Un-
der a specific form of the correlation, an algorithm with
knowledge of the target’s location can find the target in
polylogaritlumic time.

However, in the most general distributed search context,
one may have very little information about the global
structure of the network, and in most of real systems it
caimnol be considered as & dimple 2D grid.

The goal of this research is to develop an efficient algo-
rithm to be able to deliver a message in a small number
of hops from a source user to a target user whose location
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Country Number of Nodes Number of Edges (k) (&) {e) = &Y/N () )= In(N)/ In{{k})

France 18 816 483 81 614.506 867 016 9.1007 8,52 7.75
Portugal 1218 377 4 003 452 857028 5.-1077 835 744
Spain 5 020 366 16 137920 544 0.21 48.1077  10.36 9,20

Table I. Some properties of the social notworks in the studied conntries like the average degree (k) average clustering roefficient
(c), and average shortest path length (1) as well as the corresponding values for random networks with the same size {c.) and

{t-). The observed values are typical for smail-world networks.

is given in tering of his/her coordinates in a city of the
country under study. We want to discover the most effi-
cient strategies for the case of lmited information (with-
out global knowladge of the social network), just using
local information such as the identities and conncetivity
of a node’s neighbors, and its neighbors’ neighbors based
on the structure of the empirical social networks.

We study three different countries, both at the inter-city
and at the infra~city levels. We demonstrate that our
gearch algorithin works well on real friendghip networks
at the inter-city level. ‘

‘We use three different large data sets corresponding to six
months of anonymized mobile phone calls of three Euro-
pean countries (France, Portugal, and Spain}. The data
sets include information of the most used tower coordi-
nates (France and Portugal), or hilling zip codes {Spain)
for each of the users present in the call data.

From these date sets we huild friendship networks based
on reciprecal communications taking into account the
uger spatial distribution. We carry out first, .an empir-
ical study of the topological characteristics of the cor-
responding networks. In Table I, we prosent the gencral
properties of these networks and their corresponding tan-
dom networks for each country. It worth noticing that
the network corresponding to France is much larger than
the ones of Spain and Portugal, and it presents a higher
average connectivity degree and the lowest average clus-
tering coefficient. This behavior is a reflection of a higher
market share.

In Fig. 1 we present the goographical maps of the three
countries under study with the location of the corre-
sponding communication towers. Tt can be noticed that
although the towers are well spread over space, the dis-
tributions is not homogeneous presemting a higher con-
centration in the capitals and main cities. ‘

Next, we analyze the individual’s friendship interactions
as a function of the geographic distance, and explore the
relationship between network topology and geography
and their joint importance in understanding how friend-
ship spread through the populations of each country. To
this end we present in Fig. 2, the friendship probabil-
ity (measure as the number of links) as a function of
the geographical distance of the towers associated to two
connected nodes. It can be clearly observed that the
probability of friendship decreases with the distance fol-
lowing almost a power law until appresimately 700 km,
for France and Spain, and 500 km in Portugal. After
these distances it falls very fast due to approaching the
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Figure 2. The distance dependent probability distribution fol-
lows a power-law unti! the distance reaches the country bor-
dera. The peak in the distributions related to the distance of
the two largest cities is highlighted. Note that the probability
distributions are vertically shifted for better visibility.

physical houndaries of the countries. It should e also
remarked that there are peaks in the distributiom cow-
responding to the geographic distance between the main
cities In each country. These peaks are nsually explained
with a radiation model [8]. Tn the context of friendships,
however, this model should be corrected, since it is not
symmetric, Therefore, we are working on an extension of
the model for social networks with spatial structure both
at the inter-city and at the intra-city level.

The length of the shortest path distributions of each net-
work are shown in Fig.3. It can be clearly noticed that
they present the small world property, being the average
values of the shortest path 7.75, 7.44, and 9.2 for France,
Portugal and Spain networks, respectively. These values
are very close to the one expected for random networks
with the same average connectivities of the empirical net-
works whose values are given in Table I The fact that
the network corresponding to Spain has a slightly larger
value of the average length than the other two networks,
is associated to the lower value in the connectivity degree.
that can be explained by the smaller market coverage of
the Spainish data set.

We have also developed an efficient algorithm to deliver a
message in a small number of hops from a source uger to
& target user whose location is given in terms of his/her
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Figure 3. The shortest path length distribution between two
users is centered around the mean velues with small deriva-
tions, The actual average shortest path length show the cliar-
acteristics of small-world networls,

coordinates in a city of the country under study using
only information of the source’s neighbors. This alge-

rithm scnds first the message to the neighbor whose lo-
cation is geographically closer to the target. In case of
mote than one neighbor at the same distance, the algo-
rithm select the one with the highest degree. We expect
to demonstrate that our search algorithm works well on
real friendship netwarks, the needed number of hops are
gimilar to the optimal shortebt path routing, and may
bé 1iseful to help 6 reduce the network search traffic in
many applications.

Due to the advantage that our data have enough resolu-
tion to face the challenge of the intra-city study, we are
also studying the underlying social structire at this level,
which was lacking in the previous studies [7]. We expect
that the routing behavior within cities will be completely
different that the one at the inter-city level. The distance
alone does not have a crucial role predieting a connection
in the social network. As an alternative, we will explore
the community structure of the local graphs and we ex-
pect to get information of commuwiities, related to school,
work, sports, or other specific attribute of the users. This
information will be ériti¢al to develop a routing algorithm
at the ntra-city level.
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Humans live in highly organized societies. Rather than interacting with each other at random, our
relationships are governed by network processes. A key aspect of network interactions is social
contagion: people are influenced by their social contacts, and a wide range of evidence suggests
that, as a result, emotions, ideas, germs, and behaviors tend to spread across networks. Of course,
social contagion is not the only factor that can lead to clustering of traits in social networks. Such
clustering can also result from homophily, or the tendency of individuals to form connections
with individuals that are similar to them. Thus, teasing apart the role .of contagion -versus
homophily using statistical or experimental methods is a central issue in network science.
Controlled laboratory experiments provide a powerful tool for addressing this issiie. Previous
work has taken advantage of laboratory experiments to demonstrate the presence of social
contagion in the absence of homophily. A recent study from our group examined the spread of
cooperative behavior by reanalyzing data from a classic experiment using the public goods game.
By giving subjects no control over their interaction partners, the possibility of homophily was
excluded. Nonetheless, subjects who were matched with more cooperative partners cooperated
more themselves in subsequent rounds. This result provides clear evidence that this social
behavior can be contagious, even among anonymous strangers in a laboratory setting with no
homophily. - : :

The question remains, however, whether homophily artificially inflates contagion estimates
when it iy possible. Here, we explore this issue using data from another controlled laboratory
experiment examining cooperative behavior. We find that in this dataset, the possibility of
homophily either has no effect on or increases clustering estimates, In contrast, however,
homophily either has no effect on or decreases contagion estimates (i.e. estimates of the
probability of changing state in the future based on the current behavior of one’s neighbors).
Thus, in the context of cooperative behavior, homophily does not appear to inflate estimates of
social contagion, when approached longitudinally.

To be clear, any particular application does not prove or disprove the existence of homophily in
general, nor the extent to which it might alter estimates of contagion in general. Virtually all

* social systems, and most social processes, will involve both homophily and contagion, and this
has been appreciated since the 19th Century. The question is whether analytic techniques are
able to adduce evidence for both processes, distinctly. The results here, and also analyses
conducted by others, emphasize the fact that homophily can, depending on the circumstances,
inflate, deflate, or not affect assessments of interpersonal influence. And these results emphasize
the value of studying social contagion by looking longitudinally at the processes at hand, and
considering changes in states.

More specifically, we examine clustering and contagion in settings where homophily does or
does not occur by taking advantage of a dataset from a previously published cooperation
experiment where homophily was excluded in one condition but possible in another. In this
experiment, subjects recruited from Amazon Mechanical Turk engaged in a stochastically
repeated social dilemma on a social network in groups averaging 20 people in size. Subjects
were randomly assigned to positions on social networks, and each round, subjects chose between
cooperating (paying a cost for each neighbor to receive a benefit) or defecting (paying no costs
and generating no benefits). After making their decisions, subjects were informed of the
decisions of each of their neighbors.
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In the fixed condition, links were not updated; in all rounds, subjects played with the same
neighbors, precluding the possibility of homophily. In the ffuéd condition, after each round, the
network connections between 30% of subject pairs wete randonily selected to be updated. One
member of each pair was informed of the other’s behavior in the preceding cooperation round
and was offered the opportunity to ‘alter their corinection with that individual: If a link did not
already exist between the pair, the subject could form a new connection, and if a link already
existed, the subject could break it. Thus, in the fluid condition, subjects could preferentially form
and maintain relationships with others that behaved similarly to them; that is, homophily was
possible. These two experimental conditions thus allow us to compare estimates of clustering and
contagion when homophily is and is not possible.

Before discussing the results, it is important to note that behavior in this experiment constitutes
play in repcated cooperation games. Therefore, while changes in behavior over time fit the
formal definition for social contagion, such shifts may also reflect conditional strategies
employed in repeated games. Additionally, unlike traditional homophily, the dynamic network
structure in the fluid condition creates asymmetrical assortment; cooperators preferentially assort
with other cooperators, but defectors do not preferentially assort with other defectors. It is
important to keep this in mind when considering our results.

First, we compare clustering of cooperation and defection in the fixed and fluid conditions. We
measure clustering, or the extent to which neighbors are similar to each other, by examining the
probability than an individual cooperates as a function-of the percentage of her neighbors that
cooperative in the current round. We use logistic regression with robust standard errors clustered”
on subject and experimental session, accounting for the non-independence of observations from
the same subject or from subjects within the same session, and include controls for round number
and the number of neighbors an individual has. We find a significant positive association
between the probability of cooperating and the percentage of cooperating neighbors in the fluid
condition but not in the fixed condition (although a regression including both conditions finds no
significant interaction between condition and percentage of cooperative neighbors). This
potential asymmetry probably arises from the fact that cooperators in the fluid condition were
more likely to form and maintain connections with other cooperators, resulting in more similarity
between neighbors in the fluid condition relative to the fixed condition. Thus, if considered
alone, one would infer a significant clustering effect in the fluid but not fixed condition, This
suggests that the possibility of homophily may inflate estimates of social contagion, if behavioral
clustering is interpreted as evidence of social contagion, and highlights the often- discussed
problems with this method.

Next, we examine social contagion by measuring changes in behavior across time. In these
analyses, we examine the probability that an individual changed behavior between the previous
round and the current round, as a function of her neighbors’ behavior in the previous round. We
examine transitions both from cooperation to defection, and from defection to cooperation, and
again use logistic regression with robust standard errors and controls to relate these transition
probabilities to the fraction of cooperating neighbors in the previous round.

For the contagion of defection, in both the fixed and fluid conditions, we observe a significant
negative association between the probability of switching to defection and the percentage of
cooperating neighbors. Thus, having a greater fraction of defecting neighbors makes one more
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likely to switch to defection oneself, both when homophily. is or is not possible. In contrast, for
the contagion of cooperation, the relationship between the probability of switching to
cooperation and the percentage of cooperating neighbors is statistically significant in the fixed
condition but not the fluid condition (although, as in the clustering analysis, there is no
sigmficant interaction between condition and percentage of defecting neighbors when
considering all data together). Thus, in contrast to the clustering analysis, we find no evidence
that homophily inflates estimates of the contagion of defection; if anything, homophily deflates -
contagion estimates in this experimental context: if considered alone, one would infer a
significant contagion of cooperation effect in the fixed but not fluid condition.

This may be because in the fluid condition, individuals have the possibility of forming new
connections with new neighbors, creating an incentive to switch to cooperation to attract new
cooperative neighbors. Thus, individuals in the fluid condition may switch to cooperation even
when they are paired with uncooperative neighbors, resulting in a deflated relationship between
the previous cooperative behavior of ane’s neighbors and the probability of switching to
cooperation. This suggests that the spread of selfish behavior may be a more robust property of
human social networks than the spread of cooperative behavior, not because cooperative
behavior itself is less stable (mdeed, subjects cooperate more in fluid than fixed networks), but
rather because cooperative behavior can result from a larger set of motivations.

Together, these results highlight the value of studying social contagion by exploiting a

longitudinal approach that considers changes in state and also contribute to our understanding of
the contagion of cooperative behavior. _ S o o
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The structures of communication networks are critical to collaborative problem solving [1]. Email data sets can provide &
unique view into the communication patterns of organizations and help researchers directly observe these communication
networks, In this project, we are particularly interested in topic-specific communication patterns. Such information may be
valuable to organizations that want to know, for example, whether there ar¢ any breaks in communication about particular
topics. Organizations may wish to remedy these breaks in order to prevent lack of communication between relevant
communities. We introduce a nove! Bayesian admixture model for the text and network attributes of email data that can be
used to jointly infer topics of comnmunication, a partition of the email network into topic-specific subnetworks, and two-
dimensional visualizations of those subnetworks. After validating our model with a link prediction task and two data fit
experiments, we use a new email dataset to show how different inferred fopic-specific subnetworks exhibit different
behavior, and how our visualizations could be used to help assess the appropriateness of an organization’s current structure.

There has been a great deal of work on probabilistic generative models for jointly modeling text and network data, Although
there has been some work on modeling email data (e.g., the anthor--recipient topic model [2]); much of the recent work in
this area has focused on networks of docurnents, such as web pages and the links between them [3] or academic papers and
their citations [4]. In contrast to these types of data, email networks are networks of individuals; documents are associated
with connections between nodes rather than with nodes themselves. Additionally, much recent work on jointly modeling
text and network data has focused on link prediction (e.g., the relational topic model [31) and does not offer the ability to
extract qualitative structural information about the network and associated documents, Unlike this previous work, we focus
on latent space embeddings of emzil networks for the purpose of producing network visnalizations that are meaningful,
precise, and accessible to users who wish to perform exploratory or descriptive analyses, There are a large number of
existing techniques for network visualization; however, rather than viewing an email network as a single communication
network, we treat an email network as a composition of multiple topic-specific networks and visualize each one
individually. To date, identifying and visualizing topic-specific networks has been almost completely unexplored. '

Cur model builds upon three previous approaches. Our strategy is to use a joint generative model of the text and network
data with a structure similar to that of Correspondence-LDA (Corr-LDA) {5]. Our model has a set of admixture components
for explainitig the words of the emiails and another set for explaining the recipients of those emails, As in latent Dirichlet
allocation (LDA}) [6] and Corr-LDA we use muliinomial distributions over words as the admixture components for the text
data. We use latent spaces in the sense of Hoff’s latent space model (LSM) [7] as the admixture components for the networlk
data. LSM models the probability of a connection between two actors as a function of the distance between those actors ina
latent (i.e., unobserved) Euclidean space. Latent spaces of this sort have not previously been used in the context of mixture
or admixture models. Our model therefore provides the ability to identify topics, as in LA, and to identify topic-specific
subnetworks while embedding those networks of actors in two-ditnensional Euclidean space for visualization, as in LSM.

Our model associates network edges with topics, We view an email data set as a multinetwork consisting of observations of
edges between pairs of actors where each edge is an author--recipient pair within an email, According to our model, a word
in an email is well-described by a particular topic if that word has high probability in the topic and the topic has high
probability in that document. Thus, our model infers groups of words (i.., topics) that commonly occur together in
documents, Furthermore, a group of edges (i.e., a snbnetwork) is well-described by a latent space if actors who
communicate more frequently in that subnetwork are closer together in that space. Our model identifies each topic's
subnetwork by finding edges that are well-described by that topic's latent space and which belong to documents containing
that topic. A summary of our model in the form of its graphical model and its generative process is shown in Figure 1.

We also introduce and analyze a new email data set. This data sct is part of the public record and represents a yet-untapped
source of email data for academic researchers in the computer, social, and orgamizational sciences. The data set consists of
emails between department managers in New Hanover County, North Carolina. These departments comprise the executive
arm of the government at the county level. In this autonomous local government, the county manager acts as the executive
and the individual departments are analogous to the individual departments and agencies in, for instance, the U.S. Federal
governtuent. In addition to offering a view into the communication patterns of the department managers of New Hanover
County, our analysis serves as a case study m modeling interagency commmnications in government administration.

71



Social Data Collection and Analysis

& hyperparameter for a symmefric Dirichlet
64 ~ Dir (o) | topic proportions for doe. d -

8 ' 4 hyperparameler for a symmetric Dirichlet
¢, ~ Dic (8) distitbution over word lypes for topic t
Zam ~ Mult {64) topic assignment of token » in doc. d
wan ~ Mult (¢, ) | type of token n In doc. d

o - Guussian hiyperparameters -

85" ~ NT(O, 02) position of actor 4 in latent space ¢

by o N(p,0%) | ntercept of latent space £

aq . . aathor of doc. d

zg ~U{1,..., N7} | the token assignment of edge j in doc. d
Ydi ™~ Bem(pi:‘?dj)) edge between actors a4 and 7 in doc. d

Figure 1: The directed graphical' model for our new model and a table suminarizing the corresponding probabilistic
generative process, where No* = max(1; ), and we use o, the logistic sigmoid fusction, to map offset Euclidean distances
to probabilities. The probability of actor i communicating with actor / in space ¢ is defined as py® = (B, |ls— s/9|)).

More specifically, our new data set consists of the complete ernnil itboxes and outboxes of 30 department managers from
February, 2011, There are 1,739 emails between the managers thémselves, 8,097 ernails authored by_the managers, and
30,909 emails authored or received by the managers. In all our experiments, we use the fully observed subset of the data
set---i.e., emails between (he managers themselvas. Tn addition ta anafyzing owr new data set, we alsovalidate our model
using the 50 most active actors [romn the Enron email corpus [8], a- widely-used, publicly-available ernaii data set,

The primary goal of our experiments is to illuswate the utility of our model as an exploratory and descriptive tool; howevet,
we Tirst validate our model using a link prediction task and a topic coherence task. These experiments are designed to show
that the model is not overfitiing and that the topics learned during joiit inference are at least as meaningful as the topics
learned by LDA. Gur ihodel outperforms all our comparison methods on link prediction and achieves topic coherence
comparable to LDA and our other baselines. These results sugiest that our model can achicve state-of-the-art predictive
performance without harming the colierence of the topics it infers, and that our tnodeling asswnptions are reasonable.

After validating our model, we focus on' the New Hanover County (NHC) data set, We first show using a simulation study
that our modzl can represent network statistics of the NHC corpus, We then conduct an in-depth analysis to showcase the
novel capability of our modei to visualize topic-specific communication patterns. Examples of four latent spaces inferred by
our model are shown in Figure 2, Through these plots of the topic-specific latent spaces, we are able to (1) analyze the
deggree to which communication patterns are consistent with the NHC organizational chart and {2) identify groups of
povernment departments who communicate within groups on the same topics, but not across groups. Our methodology is
powerful, intuitive, and applicable to any email corpus as well as to general multinetworks with text associated with their
edges. Any organization that conducts a substantial proportion of its comiiunications via email would find our modet useful
for summarizing the topics of its internal commurications as well as the commumication structure within those topics.
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Figure 2: Four example topic-specific Iatent spaces The plot for each space is titled with a human selected label (in bold)
for the corresponding topic. Below each label are four or five of the most probable words in the corresponding topic,.
ordered from tnost to least probable. The size of each department 8 acronym indicates how often that department
comrmunicates in that space. Acronyms are colored according to their respective ‘division’ in the New Hanover County
government organizational chart, which can be found at htt[p://www.nhcgov.com/Budget/Documents/FY 10-11%20Adopted
%20Budget.pdf. Notice that the ax:ronym “AM” appears t\wce in all plots because there are two assistant county managers.
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Directed Acyclic Motifs for Conversation Analytics
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Conversations bind people together in social life and allow groups to productively work together
to solve problems. Emerging social media platforms such as blogs with commenting, web forums,
and discussion dashboards purpose-built to support idea generation and probilem solving [1, 2]
allow people from around the world to come together and be collectively intelligent. These
platforms also capture the detailed structure of technology-mediated conversations [3], which can
then be analyzed using techniques from network theory to gain insight into the nature of
conversations. Insights into how people interact can lead to better structuring of platforms and
improve policies on seeding/moderating productive conversations.

Previous analyses of web conversations have projected the structure onto a representation
where nodes are people and directed edges occur when one person directly responds to another
[4]. Here we study the original structure where comments are the nodes and directed edges occur
when one comment directly references another. Since conversations unfold sequentially in time
and therefore lack loops, their structures are directed acydlic graphs (DAGs). Although many
networks that capture the structure of human interaction, such as citation networks [5],
information spread networks [6], and hierarchical exchange networks [7] are DAGs, there is a
paucity of network-theoretic analysis techniques specialized to this class of networks, cf. [8].

The powerful method of network motifs has been used to discover overrepresented subgraphs
that form the basic building blocks of many networks [9] and to define superfamilies of networks
[10], but has not been used with DAGs. Here, we extend the method of motifs to settings where
networks are DAGs and apply it to understand the basic building blocks of two web conversations.

To identify network motifs with statistical significance, the basic approach is to compare the
network under study to an ensemble of random networks and find subgraphs that occur
significantly more often. We use the ensemble of random DAGs that preserve in-degree and out-
degree distributions, generated using a rewiring procedure [8, Sec. H{1.C]. One could also have
considered other random DAG ensembles [11]. To test statistical significance, we use the step-
down min-P-based algorithm for multiple-hypothesis correction [12].

Since we are primarily concerned with conversations, we assign names inspired by logic to the
several subgraphs that may occur in DAGs on three nodes, Table 1. Note the ordering constraint in
DAGs reduces the number of possible subgraphs from sixteen to six. The table also gives closed-
form expressions used to perform the triad census. These formulae are in terms of the adjacency
matrix A, the adjacency matrix E of a graph formed by converting any directed edge into an
undirected edge, the adjacency matrix M of a graph formed by only considering bidirectional links,
and the matrix € =4 ~ M., The complement of E, E, is created when all zeros (except on the
diagonal) are changed to ones and vice versa. Pointwise matrix multiplication is denoted by x.

To demonstrate the method of motifs for DAGs, we consider thé conversation structure in the
Polymath Project, a collaboration that proved a new result in combinatorics [13, 14] and a weblog
conversation about blogs driving action {15, Fig. 2]. These DAGs are shown in Figure 1. The results
of our motif analyses are shown in Figure 2. Statistical analysis shows that the implication (p=
0.005} and the chained syliogism (p = 0.003) are network motifs for the Polymath Project graph.
On the other hand, the weblog conversation graph has the empty triad as.a motif (p = 0.01). That
the motif profiles of the two examples are completely different implies they are built from different
building blocks. Going forward, it is of interest to survey a large number of conversations and see
whether superfamilies of conversations arise and if so, what functional explanations emerge.
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1 Introduction

The curtent availability of bath computing power and diverse corpora of large social network datasets cre-
ates at unprecedented opportunity for exploration/discovery of human strategies. However, creating plausible
models then explain the emergence of such netivorks is not trivial and requiites 2 priori intuitions on the key
drivers of network formation. In this ongoing work we employ a machine learning approach to:automatically
discover generative models for complex social networks. This work s aligned witl: the idea of creating artificial

scientists, Por example, in a work with:some parallels to the ideas presented in this paper, scientific laws are
extracted from experimental data ising genetic programming (Schimnidt & Lipson, 2009).

We apply our techiiique to the study of matrimonial networks. More specifically, alliarice networks(Roth
et al., n.d.), wiich are a simple representation for the structure of mairiage relationships in a population. In
an alliance network, a node represents a group of individuals and an edge represents a marriage, whete the
origin is the wife-giving group and the target is the wife-taking group. This representation has the advantage
of retoving some of the complexities present in more traditional kinship networks Hamberger et al. (2011),
namely the existence of getierations, labeled nodes (for different genders) and Iabeis edges (for different types
of relationships). :

We present one of our experimental results, where we geherated two theories that explain the behaviowrs
underlying a real corpus obtained by field researchers. QOne of the theories was informally validated by an
anthiropologist who stiidied the population in loco.

2 Method

2.1 Linking behaviours as computer programs

Our network generatots are sitple corputer programs Iepresented as a tree stivicture (Koga, 1992; Poli et al,,
2008). Tree nodes represent functions that take the value of theirchild nodes as parameters. Tree leafs are either
variables of constant values. A tree can be recursively evaluated all the way to the top, eventually returning a
single value. The Tole of a program in our method we propose is to quantify the plausibility of two nodes
establishing a connection at a given moment.

The input variables available to the program are: a numerical node identifier; in and out degrees; in and out
strerigth; link strength; directed, undirected and reverse distance. The function sét consists of simple arithunetic
operators, getieral-pirpose functions and comparators.

A simulation run is performed to generate the synthetic network that will be used for comparison against
the real network. The number of nodes in the real network () and the number of edges (#) -are taken as
reference for the simulation. The simulation is initialised with m disconnected nodes and runs for n cycles,
with a new edge being generated at each cycle, o ' R

‘During each simulation cycle, a weight is assignéd to every possible directed edge. This weight is the result
of the evaluation of the generator program. The edge to create is then selected by a stochastic process that
assigns to each possible edge a probability of selection proportional to it's weight. If all probabilities are 0, one
edgeis selected amongst all possible pairs accorditig to an uniform distribution.

* telmo@telmomenezes.com
Yot ehess Fr
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Figure 1: Convergence of the several network metrics during an evolutionary run.

€y Gz o, & - I x A A

real 0.0 00017 0.0 04673 335 324 2200 2270
syntheticA 0.0 0.0017 00 04658 328 332 2194 2289
syntheticB 0.0 0.0018 0.0 0.4913. 335 300 2028 2438

Table 1: Metrics for real and synthetic networks,

Evolutionary search for behaviours

The search algorithm is initialised with a population of randomly generated programs. The algorithm runs
for a number of generations, where successive populations ate generated from the previous ones, by mutating
and recombining programs from the previous generation. Individuals are stochastically selected to generate
offspring according to a measure of their quality, usually calied the fitness function. Evolutionary algorithms
are not guaranteed to converge on a solutfon, but will tend to approximate an optimum. The specific type of
evolutionary algorithm we use in the work is called genetic programming because a solutionis represented as
a computer prograri. '

The fitness function we employ s the length of the vector of the ratio hetwren eight metrics for the real and
simulated network. These metrics were selected for being key in describing the most fundamental aspects of
an alliance network, and because of their straightforward interpretation in anthropological terms:

€o denotes the percentage of endogamous marriages;

tx is'an index of network concentration which indicates the degree to wlnch martiages are concentratad
among a few pairs of marriage partners;

tx, 1s an index of endogamle network concentration, and expresses how much endogamous ma:nages
are concentrated over a few groups;

sy is an index of network symmetry, which indicates the degree to which marriages tend to be recipro-
cated and groups are likely to be the wife-givers of their own wife-takers;

ITis the number of parallel cireuits of length 2;

% is the number of crossed circuits of length 2;

A s the number of transitive triads;

A’ is the number of non-transitive triads,

3 Results: Samo Corpus

From a set of five experiments, two resulted in high quality approximations as well as relatively simple pro-
grams. Program A approximates the real network closer than B, but is also more complex. Program B does not
use specific node identifiers (e.g: Origld), depending solely on endogenous network phenomena.
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Listing 1: Program A

1f max(UndirectedDistance, TargetQutputDegree) < (Origld = ReverseDistance}
return 0.07

else
return DirectedDistance

This program configures two modes of operation, the first is a constant {low} value while the second makes
the probability of connection proportional to the directed distance between two nodes. The first mode can
be qualitatively defined as a low probability made, given that DirectedDistance is at least 1 (except for endoga-
mous counections). Roughty, the probability of selecting the second {stronger) mode increases with the reverse
distance between the nodes and decreases with the target output degree: The origin node id s also considered,
introducing an a priori preference for certain groups over others. Some nédes are intrinsically more desirable
as wife givers. Overall, groups tend to form connections with groups that are currently distant from ther.

3.2 ProgramB

Listing 2; ProgremB

if (ReverseDistance > 0}

return (2.2 / log(TargetlnputStrength)) + ReverseStrength
else
return 0

This program appears to also contains two modes of operation, but that's net the case. In fact, the condition
just prevents the creation of endogamous links, given that a distance of 0 is only possible fromn a group to
itself. Connections only take place between two distinct groups, with the probability depending on the sum of
the current reverse strength (a reciprocity behaviour) with a constant divided by the natural logarithm of the
current target input strength. This program explicitly forbids endogamous links while promaoting reciprocity
and preferring the target groups that have received less wives.

4 Discussion

We found two models that are quite different, but both able. to approximate the real data very closely. We do
not find this swprising, Even human scientists ave capable of generating a multitude of theories. that predict
equally well different phenomena.

. The two models have one tling in commen; both promote balantce in terms, of preferring creation of links
with currently less popular targets. In the case of program A this is implicit, given that the less connected a
node is the more likely itis to be distant to any other given node. In fact we suggest that both models propose
a dynamic of anti-preferential attnchment.

Both the quality of the approximations and the legibility of the generated models suggest that this is a
promising technique to model complex sacial networks in general.
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Empirical evidence suggests that urban features ranging from individual-level d'yadic interac-
tions (number of acquaintances, corhmunicé_tion time) to popula.ti'on-level. variables (contagious
disease rates, patenting activity, productivity and rcrime) grow predictably with respect to city pop-
ulation, and that they do it so with surprisingly similar scaling exponents, which implics a universal
scaling mechanism behind them. However there is no widely accepted generative theory that can
explain these observations at both scales. We believe that the many scaling components can be
explained as a result of social interactions and information flow, and we propose a simple modet to
explain the empirically measured scaling exponent as a function of social tie density. This yields
a generative model for city growth, linking the effects of geography, population density and so-
cial interaction. Our results suggest that scaling behavior of city characteristics can be explained
as a éonsequence of geographical constraints on social structure, without the need to appeal to
modularity, specialization, or hierarchy.

Researchers [1, 2] show from both online and phone call datasets the probability that a link

will form between two individuals at distance r is in effect a gravity model. Based on these
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principles on the role of density in driving social interactions, our work shows in closed form that
the relationship between the number of social ties in a city and the density of the city is governed
by:T(p).= p]n p+Cp where Cisa constant mdepeuclent of p.

Our model prediction matches well w1th the number of phone call ties in US counties of dif-
ferent size as illustrated in Fig. 1(a). In addmon, the number of ties in our model from both our
closed form and simulations showﬁ in Fig. 1(b) are reasonably close to a power-law -distribution
with 3 ~ 1.2, revealing the mechanism behind the mystery of the nalfow power-law band in city

growth.

CBraR Call ikt VK Cunly

o 028 02 ik

Figure 1: Left(a): This figure il]ustrates real aggregated call time data on humber of friendship fies in counties of
different densities from Culabrese et al. [3] together with the theoretical pred1ct10n from our model which connects
dens1ty p and number of social ties T{p) via the plogp function. Our model captures both the power-law growth
patiern and tilts on both end of the growth curve, Right(b):The nnmber of ties T () plotted as a function of o for
~ various simulation grid sizes N and theory prediction. The best power-law iit to the scaling exponent yields a value of
.‘ B1.15 indebéndent.c).f N similar to exponents in empirical data (1.1 € 3 < 1.3).

To understand how the growth processe;; of cities work to create observed super-linear scaling,
it is insufficient to state the expected level of link formation. After all the pattern by which link
spread information is at the heart of value-creation and productivity. Because it is well known
that the structure of the network has a dramatic effect on the access of information and ideas
[4, 5] as well as on epidemic spreading 6, 7], we believe that higher social tie density would
generate a more tightly integrated society and thus engender greater levels of information flow and
interaction, which lead to the productivity and innovation related as well as disease related scaling

urban features,
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To test the hypothesis that a city’s productivity is related to how fast information travels and
how fast its citizens gain access to innovations or information, it is natural to examine how this
speed scales with population density under our model, The same analogy motivates the investi-
gation into disease spreading: with greater. connectivity, pathogens spread more quickly, and thus
it is of interest to quantify the functional relationship between tink topology and spread. We run
_ both the SI modé] énd the complex contagion model of diffusion [8, 9, 10] on networks generated
by our model, and we notice in Fig. 2 that both diffusion models generate the same superlinear
scaling spreading rate. As a consequéncé we propose that an explanation for both the super-linear
scaling in productivity and disease is the super-linear speed at which both information flow and

pathogens traverse our social network.
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Figure 2: a) The mean spreading rate as a function of density o . The points correspond to a average over 30
realizations of simulations of the ST model on a 200 x 200 grid. The dashed line corresponds to a fit of the form
R(p) ~ p'T* with & = 0.18. The solid line is a fit to our social-tie density model. b) The mean spreading rate as a
function of p under the complex contagion diffusion model. The dashed line corresponds to the power-law fit of the
form R{p) ~ p'* with o = 0.17, Solid line is our model fit. In both diffusion models, our social-tie density model

fits better with mean square error 29% and 41% less than the power-law fit respectively.
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Understanding the behavior of viral spreading processes
taking place in large complex networks is of critical interest in
mathematical epidemiology. Spreading processes are relevant
in many real scenarios, such as disease spreading in human
populations, malware propagation in computer networks, or
information dissemination in online social networks. To study
viral spreading processes, a Variety of stochastic dynamical
models has been proposed in the literdture. In these models,
the steady-state infection of the netwerk presents two different
regimes depending on the virulence of the infection and the
structure of the network of contacts. In one of the regimes, an
initial infection dies out at a fast (usually exponential} rate. In
the other regime, an initial infection becontes an epidemic,

Both numerical and analytical results show that these two-

regimes are separated by a phase transition at an epidemic
threshold determined by both the virulence of the infection
and the topology of the network. One of the most findamental
question in mathematical epidemiology is to find the value of
the epidemic threshold in terms of the virus model and the
contact network .

In many cases of practical interest it is unfeasible to exactly
retrieve the complete structure of a network of contacts. In
these cases, it is impossible to exactly compute the epidemic
threshold. On the other hand, in most cases one can easily
retrieve the structure of egocentric views of the network, also
called egonezs. To estimate the value of the epidemic threshold,
researchers have proposed a variety of random network models
in which they can prescribe structural properties that can be
retrieved from these egonets, such as the degree distribution,
local cormrelations, or clustering.

Although random networks are the primary tool to study
the impact of local structural features on the epidemic thresh-
old, this appreach presents a major flaw: Random network
models implicitly induce many structural properties that age
not directly controlled but can have a strong influence on the
value of the epidemic threshold. For example, it is possible
to find two networks having the same degree distribution, but
with opposite dynamical behavior. Therefore, it is difficult (if
not impossible) to isolate the role of a particular structural

propetty in the network performance using random network |

models. : : S

In this paper, we develop a mathematical framework, based
on algebraic graph theory and convex optimization, to study
how local structural properties of the network constrain the
interval of possible values in which the epidemic threshold
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Fig. 1. Scatter plot of the spectral radivs, Aq (Gy), versus the fower bound
B2 (G;) (blue circles) and the apper bound &2 (G;) (red circles), where each
point is associated with cne of the 100 social subgraphs considered in our
experiments.

musi lie. As a result of our analysis, we present a com-
putationafly efficient approach to find this interval from a
collection of egonets. To validate our approach, we analyze
real data from a regional network of Facebook. In particular,
we consider a set of 100 different social subgraphs G =
{Gi}i<i00. For each social subgraph G; € G, we compute
lower and upper bounds on the epidemic threshold, denoted
by L(G;) and U (G;), respectively. Since we have access
to the complete network topology, we can also numerically
compute the exact value of the epidemic threshold, which
we denote by T (G;). Fig. 1 represents a scatter plot where
each red circle has coordinates (T (G;), U7 (%)), and each
blue circle. has coordinates (T (G;}, L{Gy)), forall &; € G.
For all the social subnetworks in G, the epidemic thresholds
ate remarkably close to the theoretical bounds L (G;) and
U (G). In other words, in our collection of social subgraphs,
local structural properties of the nenvork strongly constrain
the location of the epidemic threshold, and consequently the
ability of a social nerwork to disseminate information virally,

From a practical point of view, our approach can be used
to design immunization strategies to tame the spreading of
harmul viruses, or to design network topologies in. order to
facilitate the dissemination of information.
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1 Introduction

Community structure captures the tendency of entities in a network to group together in meaningful subsets
whose members have & distinctive relationship to one ancther, Despite' playing a fundamental role in the
structure and function of networks, cormmunity structure has proved to be frustratingly difficult to define,
quantify, and extract. In addition to challenges related to computational tractability, several major factors
account for the intricacies of community extraction. ) _ o

First, the application domain includes a wide variety of networks of fundamentally different natures, Second,
the literature offers a multitude of disparate community detection algorithins. Due to differences in concept and
design, the output of these procedures exhibits high structural variability across the collection. Next, there is no
established consensus on the question of what properties distinguish subgraphs that are communities from those
that are not communities. Additionally, it is difficult to obtain negative examples of communities; in theory, we
can obtain examples of community structure, e.g., by asking experts to identify communities in a given domain,
and then declare that every other subset of nodes in the network is a negative example. However, enunmierating
all forms of negative examples is obviously intractable, and even if we could enumerate all possible negative
examples, we are still faced with the problem thet these sets might also be examples of valid commumities that
the expert failed to identify. o '

In this work, we address these issues by presenting a framework that enables researchers to assess the
structural dissimilarity among the output of multiple compunity detection algorithms and between the output
of algorithms and communities that arise in practice. Our approach analyzes communities by taking account of
a broad spectrum of structural properties, and reveals nuances. of the structure of communities.

2 - Overview_

We frame this as a class separability problem, which simultaneousiy handles many classes of communities
and types of structural properties. To this end, we specify a ledrning problem in which we map the distinct
" communities into a feature space, where the dimensions represent measures that characterize a community’s
link structure. The séparability of classes provides information on the extent to which different communities
come from the same (or different) distributions of feature values. We extract different classes of commuities
that can be labeled as either intrinsically-defined or extrinsically-defined communities. ’
We define the first set of communities by properties intrinsic to their link structure. For our purposes,
these are the sets that community detection algorithms output. Each class of intrinsically defined communities
‘comprises a set of examples that a specific algorithm extracts. We also define communitics by meaningful anno-
tations provided with the datasets, such as explicit declaration of community membership, product categories,
grouping by protein function, end so on. In this fashion, for each network, we form a class of extrinsically-defined
communitics. o -
To demonstrate our approach, we furnish our framework with a large set of structural properties and con-
sider ten different commiunity detection procedures, representative of various categories of popular algorithms,
- to produce examples of different structural classes. We consider a diverse collection of large scale real networks
whose domains span biology, on-line shopping, ‘and social systerus. We then assess separability using super-
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vised classifiers both parametric, namely Support Vector Machines [10], and nonparametric, namely k-Nearest
Neighbors [1], together with a feature selection analysis using correlation-based methods [5].

3 Methodology

We analyze nine large datassts, namely DBLP, two portions of the LiveJournal social network (denoted as LJ1
and LJ2), two portions of the Facehook network (denoted as Grad and Ugrad), Amazon, and three genetic
networks denoted by HS, SC, and Fly. These datasets range in size from 503 to 500,000 nodes.

The networks we analyze contain annotations, which we use to identify extrinsically defined (or annotated)
communities. Some of these sets are user-defined, i.e., users explicitly declare their participation in the com-
munity, while others reflect contextual information of the underlying process or organization, e.g., university
department, protein function, product category, ete.

To study classes of intrinsically defined communities, we selected a collection of 10 community detection
procedures, which are representative of strategies employed by a broad range of algorithms in the literature,
We applied these procedures to each of the nine network datasets, and labeled the resulting sets with the
identity of the community detection procedure that produced them. In total, for each network, we created 11
structural classes of communities: one class of extrinsically-defined communities, which comprises examples of
annotated communities, and each of the other 10 classes corresponding to intrinsically-defined communities,
which comprise examples extracted by each of the 10 community detection algorithms respectively.

The algorithms that we consider are breadth-first search (BFS), random walk with and without restart
(RW15 and RW0), en algorithm to identify o— 2 communities |7] (AB), InfoMap [9], Link Communities {L.C) {2],
Louvain Modularity (3], Newman-Clauset-Moore Modularity {8], Markov Clustering Algorithm (MCL) [4], and
Metis [8].

In the next phase, we measure the subgraphs induced by the communities produced in the previous step
and those induced by annotated communitics. We use a large spectrum of measurements that cover meany
properties of both the internal link structure and the external interaction of the community with the rest of
the network. These measurements include features such as size, conductance, edge density, and distributions of
various centrality measures (such as node hetweenness, edge betweenness and information centrality).

By measuring these structural properties for each example of a community derived in the previous phase,
we obtain 11 classes of labeled examples in feature space, which constitute the input in our framework.

In this work, we treat the research question of discriminating the structure of different communities as a
class separability problem. This analysis is informative of the extent to which different algorithms produce
structural differences and the extent to which community detection algorithms succeed in producing sets that
resemble annotated communities. More specifically, we employ the Support Vector Machine (SVM) and A~
Nearest Neighbor methods to confirm each other’s outcomes while ruling out variahility due to the specifics of
each algorithm. .

We perform two experiments. In the first, we are interested in analyzing structural consistency within
the 11 classes of communities, For example, do the communities generated by BFS tend to resemble one
another, or is there confusion between different classes? For each networl, we use cross-validation to train
& multi-class classifier on elements from each of the 11 classes of communities from that network. We. then
evaluate the classifier on the remaining elements from each of the 11 classes. Table 1 contains the results of
this experiment. We see that for most networks and classes, a plurality of the probability mass from that class
was properly classified. This experiment shows that the classes of communities tend to be internally consistent,
demonstrating that different community detection methods produce results that are fundamentally different
from each other, and suggesting that for a practitioner who wishes to find a specific type. of community, the
choice of algorithm is crucial. ‘

While the first experiment showed that the various classes, including the class of annotated comnunities,
tend to be internally consistent, we. are also interested in identifying which of the 10 intrinsically defined classes
the set of annotated communities most resembles. That is, although no algerithm fully captures the structure
of annotated communities, which comes the closest? We traih a classifier on elements from the 10 classes of
communities identified through algorithms, and then apply this classifier to the set of annotated communities.
We see that for nearly every network, the annotated communities are most similar to the two classes of random
walk communities. ' ‘

Finally, we apply the Correlation-based Feature Selection method [5) to each of the 11 classes of communities
in order to determine which features are most valuable in discriminating between classes. We see that for most
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Grad | Ugred | H8 | 8C Fly | DBLP | Amas | LJ1 [ LJ2
BFS 60% s9% | 73% | 70% | (40%) | 3% 55% | 86% | 81%
RWO 44% 55% 43% | (s0%) | (27%) | 2% 43% | 61% | 83%
RWI15 | 40% | (29%) | 44% | 42% | 34% 46% 30% { BT% | 5%

AB 83% 1% 90% 1% 80% T0% 74% 90% |- 80%
j3Y1 27% {23%) 2% 73% (2%) 62% 51% ac% | 66%
LC 688% 98%. | 83% 85%. | 83% BT% 58% 00% | 80%

Louv. 24% (3%) 49% A%y | 0%) 45%, 58% 38% | 49%
Newm. | (14%) | (25%) | (15%) | (0%) 90% 26% 39% | 45% | 56%
MCL | 19% | (2%) | 87% | 28% | (34%) | &9% 46% | 80% | TA%
Metis 81% 73% 31% 20% | (42%) 88% | es% | 92% | 86%
| Annot.'| '87% 33% 50% | 46% (8%) 7% 0% | 79% | T1%

Table 1: Percentage of the probability mass of classification of elements in the test sét.into the correct class,
using SVM, for all networks. Values in parentheses indicate that a plurality of the probability mass from that
was cla:-.-mﬁed ag some other class.

networks, conductance and diameter are especially valuabls.

Ag illustrated by our experiments, by producing artificial or real examples of communities that possess the
structure we wish to find, we can use our framework to enable sn mformed choice of the most suitable community
detection niethod for a given network. In addition, it allows for & comparison of existing commumty detection
algorithms and may guids the design of new ones.
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1 QOverview

Lately, there has been a surge of attention given to network-based dynamical systems, in which
agents interact according to local rules via a dynamic communication graph [7]. Much of the
previous work has focused on the exogenous case, where the communication topology is decoupled
from the evolution of the system. We refer interested readers to [3] for a good overview of research
in this area. In the more common, endogenous version, the communication graph changes over
time according to the current states. The feedback loop between dynamics and topology creates
considerable difficulties, and efforts have been underway to build an algorithmic calculs within the
broad framework of influence systems [5]. This work investigates the complexity of Hegselmann-
Krause systems (abbreviated as HK system from now on), a popular model of opinion dynamics
that has proven highly influential over the years [1, 8, 9, 11, 13] and stands as the archetype of a
diffusive influence system [6]. In the d-dimensional version of the model, each agent has an opinion
represented as a point in RY. Two agents are neighbors if they are within unit distance from each
other. At every time step, each agent moves synchronously to the mass center of its neighbors.

HK systems are known to converge [10, 12, 16], meaning that they eventually come to a full
stop. The convergence time has been bounded by n% time and conjectured to be polynomial [4].
It was shown to be O(n®) in the case d = 1 {14]. The contribution of this work is threefold: first, we
prove that the convergence time is indeed polynomial in n, regardless of the dimension; second, we
lower the one-dimensional bound from O(n®) to O(n3); third, we establish a quadratic lower bound,
which improves the known bound of 2{n) {14]. We also consider noisy variants of the model.

The bidirectionality of the system pldays a crucial role in the proof, as it should. Indeed, it
is known from (5| that allowing different radii and everaging weights for the agents can prevent
the convergence of the communication graph. Our proofs are an elementary mix of geometric and
algebraic techniques. Much of the current technology for HK systems centers around products of
stochastic matrices. This work injects a geometric perspective that, we believe, will be necessary
for further progress on the more difficult directional case.

2 Future Work

In this work, we analyze the convergence rate of the homogeneous HK system in arbitrary dimen-
sions. The system is shown to converge in polynomial time, but can take at least a quadratic

“Princeton Uriversity, Computer Sclence Department and Center for Computational Intractability,. Email
{arnabb, mbraverm, chezelle, hlnguyen}@cs.princeton.edu
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number of steps in the worst case. Getting tight bounds on the convergence time of the system,
even in just one dimension, remains an interesting open problem.

A particularly interesting challenge is to analyze the heterogeneous version of the HK system,
i.e. when the neighborhood radii of all the agents are not necessarily the same {15]. New ideas
are needed to understand the behavior of this system in particular, and directional systems in
general. Our analysis of a noisy variant of homogeneous HK system is a step towards studying
more complicated directional systems.

Beyond convergence rate, the behavior of the homogeneous HK system is still full of mysteries.
Most notable perhaps is the 2R conjecture [2]: when agents are drawn uniformly at random on
an interval, they converge to clusters at distance close to twice the minimum possible inter-cluster
distance. Resolving this conjecture remains well beyond our understanding of the system.
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Crowdsourcing has become an efficient and inexpensive way to label iarge
datasets in many application domains, including computer vision and natural
language processing. Resources such as Amazon Mechanical Turk provide
markets where the requestors can post tasks known as HITs (Human Intelligence
Tasks) and collect large humbers of labels from hundreds of online workers {(or
annotators) in a short time and with relatively low cost. A major problem of
crowdsoucing is that the qualities of the labels are often unreliable and diverse,
mainly because it is difficult to control and monitor the performance of a large
collection of workers. In the extreme, there may exist “spammers”, who submit
random answers rather than good-faith attempts to answer the question, or even
“adversaries”, who may deliberately give wrong answers, either due to malice or
te a misinterpretation of the task. A common strategy to improve reliability is to
add redundancy, such as assigning each task to multiple workers, and aggregate
the workers’ labels. The baseline majority voting heuristic, which simply assigns
the label returned by the majority of the workers, is known to be error-prone,
because it counts all the annotators equally. In general, efficient aggregation
methods should take into account the differences in the workers labeling abilities.

~ A principled way to address this problem is to build generative probabilistic
models for the annotation processes, and assign labels using standard inference
toois. A line of early work builds simple models characterizing the annotators
using confusion matrices, and infers the labels using the EM algorithm. Recently
however, significant efforts have been made to improve performance by
incorporating more complicated generative models. However, EM is widely
criticized for having local optimality issue; this raises a potentiai tradeoff between
more dedicated exploitation of the simpler models, either by introducing new
inference tools or fixing local optimality issues in EM, and the exploration of larger -
model space, usually with increased computational cost and possibly the risk of
over-fitting.

On the other hand, variational approaches, including the popular belief
propagation (BP) and mean field {MF) methods, provide powerful inference tools
for probabilistic graphical models. These algorithms are known to be efficient,
often with provably strong local optimality properties, or even globally optimal
guarantees. To our knowledge, no previous attempts have taken advantage of
variational tools for the crowdsourcing problem. A closely related approach is a
message passing algorithm in Karger et al. (referred to as KOS in the sequel},
which the authors asserted to be motivated by but not equivalent to standard
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belief propagation. KOS was shown to have strong theoretical guarantees on
(locally tree-like) random assignment graphs, but does not have an obvious
interpretation as a standard inference method on a generative probabilistic model.
As one consequence, the lack of a generative mode! interpretation makes it
difficult to either extend KOS to more complicated models or adapt it to improve its
performance on real-world datasets.

Contribution. In this work, we approach the crowdsourcing problems using
tools and concepts from variational inference methods for graphical models. First,
we present a belief-propagation-based method, which we show includes both
KOS and majority voting as special cases, in which particular prior distributions
are assumed on the workers' abflities. Howevaer, unlike KOS our method is derived
using generative principles, and can be easily extended to more complicated
models. On the other side, we propose a mean field method which we show
closely connects to, and provides an important perspective on, EM. For both our
BP and MF algorithms (and consequently for EM as well), we show that
performance can be significantly improved by using more carefully chosen priors,
We test our algorithms on both simutated and real-world datasets, and show that
both BP and- MF (or EM), with carefully chosen priors, is able to perform
competitively with state-of-the-art algorithms that are based on far more
complicated models.
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How political opinion, product adoption, rumors, and trends diffuse through social
networks has been a fundamental question for many decades in a wide variety of research
disciplines. The spread of opinion on networks can be thought of as a state dynamies,
where each node decides its state based on interactions with its neighbors. In many such
settings, the dynamics of the states of nodes are described by some Muarkou process on a
graph G = (V, E) with a finite state space S. Le., the state of a node v at each time step ¢
is determined solely by the states of v and its neighbors at a tinie period {t—g, -, t—1}
for some nonnegative integer j. Examples of such Markov processes include information
diffusion models [7], the voter model [15], the pricing model [6], the naming game [14],

-and the gossip algorithim [4], some of which we will present in more detail later.

To predict the behavior of opinion spreading under the Markov process, mean-field
(MF) approximation with ordinary differential equations (ODEs) has been widely used 12,
3,5,11]. Such an approach describes the state change rule as a system of ODEs that
reflect the inherent Markovian state dynamics. In essence, the actual state ratio dynarnics
converges to the solution of the ODEs as the number of nodes goes to infinity. However,
the analyses of its convergence are known only for symmetric network structures such as
complete or bipartite graphs [8]. In our work, we propose a generalized MF method that
relaxes the condition on strong symmetry, and prove the convergence to the ODE solution
on any slightly dense graphs.

More precisely, consider a network structure ¢ = (V, E) with n = |V| nodes so that
each node has degree w(logn) (hence, slightly dense). Initiaily each node determines its
state at time O randomly according to the state ratios (s;);cs in an iid. manner. Then
we prove that the solution of the actual state dynamics of the Markov process cohverges
to the solution of the ODEs. In addition, we also show that the ratios of the states among
the neighbors of any given node is close to the actual state ratios of the entire network.
As a general framework, our analysis can be applied to many opinion spreading processes
in social networks caused by public service advertising, group-targeted marketing, and
external influence [1,10]. Note that our result does not take any structural information of
the network into account. Hence, surprisingly our results show that the MF approximation
holds independently of the network structure, such as the comrnunity structure, as long
as the initial states are drawn in an ii.d. manner.

We adopt the standard (continuous) asynchronous time model [11] to express the state
dynarmnics, where on average there are n state updates per unit time. Our result can also
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be applied to the slotted synchronous time model [4]. The following theorems formalize
our main results. -

Theorem 1 Consider a Markov process with a finite state space S on a graph G = (V, E)
so that all nodes are of degrees w(logn), and with an initial state ratio (s;)ies € [0, 1]13 l.
For each time t € Ry, let a(t) = (a:(t)kes be the solution of the system of ODEs that
corresponds to a given Markov process 1. For t € Ry, let b(t) = (b;(t))ses be the random
variable for the actual state ratio of V. Then, for any constants € > 0, 6 > 0, and T > 0,

Pr (OE?ET”b(”)'_ a(®)|, < e) = 1— O(n_,g)" . o

This means that the overall state ratio of V converges to a(t) uniformly over ¢ € [0, 7]
as n goes to infinity. Furthermore, the state ratio of the neighbors of each node at time
t € [0,T] is also very close to a(t), as stated in the following theorem.

Theorem 2 Fort e Ry and v € V, let by(t) = (byi(t))ics be the random variable for
the actual state ratio of the neighbors of v. Under the same condition as in Theorem 1,
for any constants € > 0, § > 0, and T > G,

Pr ( sup  ||by(t) —a(t)||, < e) =1—o(n7%). (2)

0<t<T eV

We conducted experiments on the network datasets consisting of two synthetic net-
works (Watts-Strogatz (W8) and the Barabdsi-Albert (BA)) of 10,000 nodes with average
degree 100, and two real-world networks (ePinions [12] (75,879 nodes with average degree
13.4) and Slashdot [9] (77,360 nodes with average degree 23.4)) 2. The opinion spreading
models we used were the linear threshold model [7 [7] and the ternary voter model [11]. Our
empirical results confirmed that Theorem 1 and Theorem 2 are very accurate for W8 and
BA networks, and are validated quite well for real-world networks where the slightly dense
condition is violated, Finally, we present the details of some of the popular Markovian
opinion spreading models where our results can be applied.

o Information diffusion models [3,7,10]: In many information diffusion models, includ-
ing the general threshold model and the independent cascade model, the state space
can be expressed by § = {O(inactive), 1{active)}. In the general threshold model,
each node v becomes active if a function evaluated on the states of its neighbors
exceeds the threshold of v. In the independent cascade model, every adoptor v has
a single chance to influence its non-adopted neighbor » with a certain probability.
Our work can also be applied to non-monotonic information diffusion models, such
as SIS model and its recent variants {3], and the information diffusion model with
external influence [10].

!Solve a(t) by a standard MF method with the system of ODEs,
*http://snap.stanford . edu
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o Voter model [5,11]: In the voter model, the state space corresponds to the set of
candidates or items to vote, and a node v either updates its state by copying that
of its neighbor chosen uniformly at random with some probability, or preserves its
state with the remaining probability.

o Naming game [18,14]: Naming game was criginally intended to model language dif-
fusion in a society. This model has been widely used for describing how a multi-agent
system can converge towards a consensus state in a self-organized way. Similarly to
the voter model, a node (listener) is selected, and it interacts with a randomly cho-
sen neighbor (speaker). The speaker randomly selects a language from its language
list and sends it to the listencr. Then, the listener updates its language list.
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