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METHODS FOR CLUSTERING MULTI-LAYER GRAPHS IN MOBILE NETWORKS

Xiaowen Dong †, Pascal Frossard †, Pierre Vandergheynst † and Nikolai Nefedov ‡

† Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
‡ Nokia Research Center (NRC), Lausanne, Switzerland

{xiaowen.dong, pascal.frossard, pierre.vandergheynst}@epfl.ch, nikolai.nefedov@nokia.com

1. INTRODUCTION

Clustering on graphs has been studied extensively for
years due to its numerous applications. However, in
contrast to the classic problems, clustering in mobile
and online social networks brings new challenges. In
these scenarios, it is common that observational data
contains multiple modalities of information reflecting
different aspects of human behavior and social interac-
tions. These interactions may be represented by a multi-
layer graph that share the same set of vertices represent-
ing users, while having different layers representing dif-
ferent relationships among users. Intuitively, each graph
should contribute to a better understanding of the under-
lying clusters from its own angle. It may be expected
that a proper combination of the multiple graphs could
lead to a better unified clustering of users’ behavior and
their social interactions.

In this work we consider different methods to com-
bine multi-layer graphs. In particular, we propose an
efficient way to combine spectra of multiple graphs to
form a “common spectrum”. To verify the suggested ap-
proach we tested it using mobile datasets. Also we com-
pare the proposed approach with community detection
methods based on modularity maximization over single
and multiple layer graphs.

2. GRAPH REGULARIZATION FRAMEWORK

The idea of working with the spectrum of the graph
is inspired by the popular spectral clustering algorithm
[1]. On a single graph, it applies eigen-decomposition of
the graph Laplacian matrix and form a spectral embed-
ding of the original vertices in a low dimensional space.
This enhances the intrinsic relationship among vertices
so that clustering based on this new representation is

usually trivial. The problem is more complicated in
case of multiple graph layers. As two recent examples,
the authors of [2] use an unified matrix factorization
framework to find a common low dimensional repre-
sentation shared by the multiple graphs in the original
space domain, while in [3] the authors propose a co-
regularization framework to find such a representation
in the graph spectral domain.

In this paper we generalize the one-layer spectral
clustering to multiple graphs by finding a common low
dimensional representation that captures the character-
istics of all graph layers. More specifically, we pro-
pose first a graph regularization framework to combine
the spectra of two graph layers. The key point is that
we treat the eigenvectors of Laplacian matrix from one
graph as functions defined on the vertices of another
graph. By enforcing the “smoothness” of such functions
on the second graph through a regularization framework,
we capture the characteristics of both graphs and get a
better unified clustering result than using single graphs
separately. Moreover, our approach has several inter-
pretations: it can be viewed as a propagation process of
the cluster labels on the graph, as well as a framework
to minimize a mismatch between the resulting partition
and information from each individual graph. Next, we
generalize this process to the case which involves more
than two graphs.

3. MULTI-RESOLUTION COMMUNITIES
DETECTION

To evaluate performance of the suggested approach
above we compare it with modularity maximization
[4] using fast greedy search algorithm [5]. Note that
modularity maximization may give a different number
of communities at different layers. On the other hand,
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Table 1. MIT datasets: combination of phone-calls,
BT and location layers. Evaluation of clustering per-
formance using the proposed and the baseline methods.
NMI and RI stand for normalized mutual information
Rand index.

NMI Purity RI
The proposed method 0.518 0.712 0.758
Sum of spectral kernels 0.486 0.673 0.729
Sum of norm. adj. matrices 0.484 0.685 0.753
Sum of adj. matrices 0.366 0.641 0.731

the ground truth data typically is clustered into a fixed
number of groups. To obtain the same number of com-
munities at different layers as in the ground truth data
we apply random walk approach [6].

In general, the suggested framework of a ”common
spectrum” may be implemented using the community
detection approach (to appear elsewhere).

4. APPLICATIONS TO MOBILE DATASETS

We evaluate performance of the proposed clustering
methods on the mobile phone datasets collected by
MIT Media Lab [7] and Nokia Research Center (NRC)
Lausanne [8]. In particular, we consider graph layers
formed by phone-calls, detected WLAN and bluetooth
proximity, and GPS locations. Simulations show that
our approach to combine graph layers improves reli-
ability of clustering compared to a several base-line
methods [2] (see Table 1 and Table 2).

Furthermore, the concept of a “common spectrum”
is helpful in analysis of any multimodal data which can
be conveniently modeled as multiple graphs. For in-
stance, it would enable us to generalize the normal spec-
tral analysis from one-dimensional to multi-dimensional
cases.

5. REFERENCES

[1] J. Shi and J. Malik, “Normalized Cuts and Im-
age Segmentation,” IEEE Trans. Pattern Anal. and
Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug 2000.

[2] W. Tang, Z. Lu, and I. Dhillon, “Clustering with
Multiple Graphs,” in International Conference on
Data Mining, Miami, Florida, USA, Dec 2009.

Table 2. NRC datasets: combination of phone-calls, BT
and GPS layers. Evaluation of clustering performance
using the proposed and the baseline methods.

NMI Purity RI
The proposed method 0.395 0.539 0.708
Community detection (∗) 0.363 0.507 0.628
Sum of norm. adj. matrices 0.381 0.534 0.710
Sum of adj. matrices 0.278 0.475 0.650
Sum of spectral kernels 0.220 0.378 0.570
(∗) graph formed by summation of adjacency matrices.

[3] Abhishek Kumar, Piyush Rai, and Hal Daumé III,
“Co-regularized Spectral Clustering with Multiple
Kernels,” in NIPS Workshop: New Directions in
Multiple Kernel Learning, 2010.

[4] M. E. J. Newman, “Fast algorithm for detecting
community structure in networks,” Phys. Rev. E,
vol. 69, no. 066133, 2004.

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
Etienne Lefebvre, “Fast unfolding of communites in
large networks,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 1742-5468, no. 10, pp.
P10008+12, 2008.

[6] R. Lambiotte, J.-C. Delvenne, and M. Barahona,
“Laplacian dynamics and multiscale modular struc-
ture in networks,” arXiv:0812.1770v3, 2009.

[7] N. Eagle, A. Pentland, and D. Lazer, “Inferring So-
cial Network Structure Using Mobile Phone Data,”
in Proceedings of the National Academy of Sci-
ences, 2009, vol. 106, pp. 15274–15278.

[8] N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-
Perez, and J. Laurila, “Towards Rich Mobile Phone
Datasets: Lausanne Data Collection Campaign,”
in International Conference on Pervasive Services,
Berlin, Germany, Jul 2010.
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Robustness and limited modular information in networks
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March 8, 2011

Many complex systems, from power grids and the internet, to the brain and society, can be modeled
using modular networks. Modules, densely interconnected groups of elements, often overlap due to ele-
ments that belong to multiple modules. The elements and modules of these networks perform individual
and collective tasks such as generating and consuming electrical load, transmitting data, or executing
parallelized computations. We study the robustness of these systems to the failure of random elements.
We show that it is possible for the modules themselves to become uncoupled or non-overlapping well
before the network disintegrates. When modular organization is critical to overall functionality, networks
may be far more vulnerable than predicted by the usual percolation transition.

Consider a system of interacting elements representing computers, power generators, neurons, etc.
These elements perform tasks sufficiently complex that they must work together in densely interconnected
modules. These tasks may be parallelized computations, protein biosynthesis, or higher-order neurological
functions such as visual processing or speech production. In order for modules to communicate, they much
share common elements, so that modules are coupled or overlapping, and the system functions properly only
when modules can interact. We ask how these networks respond when a random fraction of elements fail:
do the modules become uncoupled before the network loses global connectivity? Random failures provide
a toy model of, e.g., a traumatic brain injury or degenerative disease. If enough elements fail, the modules
can no longer communicate (higher brain functions are lost) even though the network may remain connected
(simpler autonomic responses persist). Likewise, an individual module may fail if too many of its member
elements cease to function.

Modular structure can be represented with a bipartite network (Fig. 1a) [1, 2] characterized by two
degree distributions, rm and sn, governing the fraction of elements that belong to m modules and the fraction
of modules that contain n elements, respectively. The average number of modules per element is

∑
m mrm ≡ µ

and the average number of elements per module is
∑

n nsn ≡ ν. We derive two networks from the bipartite
graph by projecting onto either the elements or the modules: One is the network between elements, while
the other is a network where each node represents a module and two modules are linked if they share at
least one element. The giant component in the element network disappears when the network loses global
connectivity; in the module network it vanishes when the modules become uncoupled (non-overlapping).
Before projection elements fail with probability 1 − p and are removed from the network. Meanwhile, a
module is unable to complete its collective task if fewer than a critical fraction fc of its original elements
remain. These failed modules are removed from the module network but any surviving member elements
are not removed from the element network. See Fig. 1b.

1
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Figure 1: The modular network representation [1, 2]. (a) We obtain two networks by projecting onto ele-
ments or modules. (b) The failure of element 3 induces the failure of module B, uncoupling the remaining
modules, even though the network itself remains connected. (c) The size of the giant component S for
rm = δ(m, µ), sn = δ(n, ν), with µ = 3 and ν = 6. Theory and simulations confirm that the network under-
goes a transition from coupled to non-overlapping modules well before it loses global connectivity. Symbols
represent element (2) and module (#) networks.

We wish to determine S (p), the fraction of remaining nodes within the giant component as a function of
p, for both the element and module networks. We begin with four generating functions [1, 2]:

f0(z) =

∞∑
m=0

rmzm, f1(z) =
1
µ

∞∑
m=0

mrmzm−1,

g0(z) =

∞∑
n=0

snzn, g1(z) =
1
ν

∞∑
n=0

nsnzn−1.

(1)

These functions generate the probabilities for ( f0) a randomly chosen element to belong to m modules, ( f1)
a random element within a randomly chosen module to belong to m other modules, (g0) a random module
to contain n elements, and (g1) a random module of a randomly chosen element to contain n other elements.
For this model, we derive both S and the condition for a giant component to exist in both the element and
module networks. In Fig. 1c we show S for µ = 3 and ν = 6. The “robustness gap” between the element
and module networks widens as the module failure cutoff increases, covering a significant range of p for the
larger values of fc.

Additionally, we discuss scale-free networks and verify the existence of the robustness gap empirically
using a number of real-world datasets. This work can also help us to understand how empirical networks are
affected by missing information, of critical importance when studying communities. Here p is the probability
that a network element is successfully captured by an experiment, such as a high-throughput biological assay
or web crawler. The robustness gap can explain how non-overlapping community methods may succeed in
networks where overlap is expected: the network is sampled down to the intermediate regime where nodes
are connected but modules are uncoupled.

[1] M.E.J. Newman. Properties of highly clustered networks. Phys. Rev. E, 68(2):026121, 2003.

[2] M.E.J. Newman and J. Park. Why social networks are different from other types of networks. Phys. Rev. E,
68(3):036122, 2003.
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Impact of Context on Information Spreading

Dashun Wang1,2,*, Zhen Wen3, Hanghang Tong3, Ching-Yung Lin3, Chaoming Song1,2, and
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March 11, 2011

Information spreading plays an essential role in numerous human interactions, including the spread of

innovations, knowledge and information security management, social influence in marketing, and more.

Thanks to the increasing availability of large-scale data, we have witnessed great advances in understanding

how information propagates from person to person, ranging from incentivized word-of-mouth effects when

recommending products, to understanding how a single piece of information forms internet chain letters on

a global scale.

Despite recent studies in online social networks, it has been difficult to obtain detailed traces of in-

formation dissemination alongside relevant contextual data such as people’s real social connections, their

behavioral profiles, and job roles in organizations. Therefore, an important question is largely unanswered:

to what extent do spreading processes depend on the underlying social network and behavioral profiles of

individuals. Indeed, on one hand, information such as rumors, innovations and opinions diffuses through

the underlying social networks. To whom and to how many people a user would pass such information is

constrained by whom s/he connects to and how well s/he is connected in the social network, and the strength

of those connections. On the other hand, the population-based heterogeneity in personal profiles coexists

with complex connectivities between individuals, raising questions about to what degree the diverse profiles

of individuals, from personal interests and expertise to communities and hierarchy, impact the information

spreading process. Understanding the role of these features is of fundamental importance.

1
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The lack of contextual information could change drastically, however, thanks to the pervasive use of

email communications in well-documented settings, such as corporate work forces. Indeed, emails have

become the most important communication method in various settings, unveiling detailed traces of social

interactions among large populations. Previous studies have shown that email communications serve as

a good indicator of social ties. Forwarded emails, written by someone other than the sender and sent to

someone who was not included in the original email, serve as an ideal proxy for the information spreading

process, where the single piece of information, the original body of the email, is passed through the social

network.

We investigate the impact of context on spreading processes in two levels:

• At the microscopic level, we are interested in the behaviors of each individual in the spreading process,

e.g. to whom and how fast does a user forward information?

• At the macroscopic level, we ask what are the structural properties of the spreading processes? And

what is the best model for the observed structures?

At the microscopic level, we find that information spreading is indeed highly dependent on social con-

text as well as the individuals’ behavioral profiles. Macroscopically, however, we find that the tree structures

observed in the spreading process can be accurately captured by a simple stochastic branching model, in-

dicating the macroscopic structures of spreading processes, i.e., to how many people a user forwards the

information and the overall coverage of the information, are largely independent of context and follow a

simple reproducible pattern.

To the best of our knowledge, this work presents the first comprehensive analysis of the determining

factors affecting information spreading processes. We believe our findings are of fundamental importance

in developing prediction models for information flow, provide new insights towards the design of our social

and collaborative applications, such as assisting users to disseminate information more efficiently, protecting

digital information leakage, and promoting spreading strategies to achieve expected coverage.

2
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Computing global social balance in large-scale signed social

networks

G. Facchetti, G. Iacono, C. Altafini
SISSA-ISAS, International School for Advanced Studies,

via Bonomea 265, 34136 Trieste, Italy.
Corresponding author: altafini@sissa.it

March 9, 2011

1 Extended Abstract

Signed graphs have been used recently to model social networks of friendship/rivalry or trust/mistrust
relationships [1, 4, 6]. Each of these pairwise relationships is represented as a +/- sign on the
edge connecting the two agents involved. In terms of social balance theory [2], such bimodal
relationships can be used to understand the structure and origin of tensions and conflicts in a
community of linked agents.

It has been known for some time how to interpret social balance on such networks: the
potential source of tensions are the cycles of the graph (i.e., the closed paths beginning and
ending on the same node), notably those of negative sign (i.e., having an even number of negative
edges). In particular, a signed graph is exactly balanced (i.e., conflict are completely absent) if
and only if all its cycles are positive. The concept of balance is not related to the actual number
of negative edges on the cycle but only to their parity, principle which is explained in a simple
manner by the notion that “the enemy of my enemy is my friend”.

For signed undirected networks, while verifying if the network is exactly balanced is an
easy problem, which can be answered in polynomial time (e.g. through the calculation of
the smallest eigenvalue of the associated Laplacian), computing global balance on a graph not
exactly balanced is an NP-hard problem, equivalent to a series of well-known problems:

• computing the ground state of an Ising spin glass;

• solving a MAX-CUT problem;

• computing the distance to monotonicity of a dynamical system (for which the signed graph
corresponds to the signature of the Jacobian linearization) [8, 3].

The equivalence with energy minimization of a spin glass has for example been highlighted
recently in [1, 7]. In this context, a negative cycle is called a frustration, and frustrations are
the trademark of complex energy landscapes, with many local minima whose structure and
organization has been so far explored only in special cases, in which the graph is particularly
simple. For istance the case studied in [7], the fully connected graph, is unrealistic for real social
networks, which have usually heterogeneous connectivity degrees. In fact, for what concerns
the real signed social networks currently available, only analysis of local, low-dimensional motifs
have been carried out [4, 6]. This amounts essentially to the enumeration of the triangles (i.e.,
length-3 cycles) and to their classification into frustrated / not frustrated, see [6, 9]. An alter-
native approach is taken in [5], where spectral properties of the Laplacian are investigated. The

1
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magnitude of the smallest eigenvalue of the Laplacian is indicative of how balanced a network
is, i.e., of how much frustration is encoded in the cycles of the networks. Both approaches
provide useful information in order to understand the balance of the social networks. Yet this
information is partial and unsatisfactory. The small motif analysis, for example, only identifies
the frustration on the smallest possible groups of interacting agents, but overlooks more longe
range conflicts associated to longer cycles (and larger communities). These might be a consid-
erable amount, particularly for sparse networks. The spectral approach, on the contrary, gives
an idea of the overall amount of frustration of the network, but does not provide any informa-
tion on which nodes are affected by the conflicts. What one would like to have is a method to
estimate globally the level of balance and at the same time identify which residual conflicts are
uneliminable in the best case, i.e., when the global optimum of the balance is found. In terms
of spin glasses, one would like to compute the ground state(s) and, more generally, study the
low-energy landscape.

In the proposed presentation we will provide the first efficient heuristic algorithm able to
perform this task on large heterogeneous signed graphs. The examples which will be illus-
trated are drawn from the recent literature on social networks: (i) Slashdots [4]; (ii) Epinions
[6]. These signed networks can be download from the Stanford Network Analysis Platform
(http://snap.stanford.edu/). Their size is of the order of 105 nodes.
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Stochastic Blockmodels with Growing Number of

Classes [Extended Abstract]

David S. Choi∗, Edoardo M. Airoldi, Patrick J. Wolfe
Harvard University

Statistical methods that were originally developed for social network
analysis are being adopted in diverse fields, such as bioinformatics and mar-
keting. In these new applications (and increasingly in the social sciences as
well), the networks are often massive and are only partially observed. As
a result, the possibility arises that models which work well in traditional
settings may overfit. Using techniques from machine learning, we analyze
this possibility for a basic model known as the stochastic blockmodel. This
model is useful for identification of communities, which is a highly active
research area [2, 3]. Moreover, under an exchangeability result analogous
to de Fenetti’s result for exchangeable sequences, the stochastic blockmodel
model can be viewed as a basic building block for nonparametrics on random
networks [1].

The main characteristic of the stochastic blockmodel is that it assigns to
each actor a latent class representing his/her community, where the num-
ber of classes K is a fixed parameter. Previous results exist proving the
asymptotic consistency of maximum likelihood estimation, under various
conditions on: 1) the number of classes K 2) the number of edges M and
actors N in the observed data. Using arguably simpler methods, we estab-
lish asymptotic consistency under more relaxed conditions than previously
shown. A rough statement of the main result is that if: 1) K behaves as
O(
√
N), and 2) M behaves as ω(N log3N), then the maximum likelihood

class assignment contains a vanishing fraction of errors when the data is
generated from the model. When the data is not assumed to be generated
from the model, the analysis is still helpful in that it provides (conservative)
confidence regions for estimates of the assortatitivity of the network. Sim-
ulation results suggest that the bounds are nearly tight; for example, Fig.

∗dchoi@seas.harvard.edu, airoldi@fas.harvard.edu, patrick@seas.harvard.edu

1

Page 9
Tuesday, May 31 
9:30A session: Communities & Structure



200 400 600 800 1000

1

1.1

1.2

1.3

1.4

Graph Size N

E
rr

o
r 

R
e

la
ti
v
e

 t
o

 M
Normalized Likelihood Error

 

 

M= N log
2
 N, K = M

.5

M = N log
2
 N, K = M

.6

Figure 1: Left: Performance of maximum likelihood estimation for simulated
data, showing convergence for K ∼

√
N and divergence for K ∼ N .6. Right:

Adjacency matrix showing community structure in a friendship network.
The structure is statistically significant in that its assortativity is unlikely
to be generated from grade, gender, or race differences alone.

1 shows that changing K from O(
√
N) to O(N .6) in simulations causes a

transition from consistency to divergence.
We fit the model to social network data collected from Facebook and the

Add-Health study. For the Add-Health data set, the model detects pattens
in student friendship networks that are more fine-grained than previously
studied. Whereas generally no formal validation method exists for com-
munity detection, our analysis is able to validate these patterns as being
statistically unlikely to be generated solely by differences in gender, grade,
or race.
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Fellows: Crowd-Sourcing the Evaluation of an Overlapping

Community Model based on the Cohesion Measure

Adrien Friggeri, Guillaume Chelius and Eric Fleury
LIP / ENS de Lyon – DNET/INRIA

e-mail: FirstName.LastName@ens-lyon.fr

Although community detection has drawn tremendous amount of attention across the sciences in the past
decades, no formal consensus has been reached on the very nature of what qualifies a community as such.
Despite the lack of globally accepted analytical definition, all authors concur on the intuitive notion that a
community is a relatively dense group of nodes which somehow features less links to the rest of the network.
Unfortunately, this agreement does not extend to the specific formal meanings of dense and less links.

However, the past few years have witnessed a paradigm shift, as the idea of defining the nature of
communities was progressively left aside. It has become apparent, and widely accepted, that it suffices to
compare several sets of communities and choose the best obtained partition – relative to a given metric,
often Newman’s Q-modularity – in order to detect communities. In particular, there has been a growing
interest in the study of overlapping communities; a distribution of the nodes across different groups which
reflects more precisely what one might expect intuitively, namely that a given node might belong to different
communities . For example, in a social network, an individual might simultaneously belong to a family, a
group of friends and co-workers groups. Due to the historical evolution of the field, to this day, most methods
used to detect overlapping communities are inspired by, or adapted from, existing counterparts for disjoint
community detection.

A novel measure: the cohesion. In this work1, we take an orthogonal approach by introducing a novel
point of view to the problem of overlapping communities. Instead of quantifying the quality of a set of
communities, we choose to focus on the intrinsic community-ness of one given set of nodes. In order to do so,
we propose a general metric on graphs, the cohesion, inspired by sociological considerations. The cohesion
is a purely local2 metric based on the notions of weak ties3 and triangles – triplets of pairwise connected
nodes, instead of the classical view using only edge density. Let G = (V,E) a graph and U ⊆ V a subset of
nodes, we define the cohesion:

C(G, U) =
�in(G, U)

�|U |
3

�
�in(G, U)

�in(G, U) +�out(G, U)

where �in(G, U) is the number of triangles in U and �out(G, u) is the number of outbound triangles from
U (i.e. having two nodes in U and the third one in V \ U). The first factor is the triangular density of U
and the second one denotes the quality of the boundaries of U . Intuitively, a community is a set of nodes
having high cohesion, i.e. high density of triangles and “cutting” few triangles.

Validation in situ. In order to validate our model, building on the Facebook API, we have launched
Fellows4, a large-scale online experiment. Fellows is a web application which makes use of the cohesion to

1Complementary material are available at http://hal.inria.fr/inria-00565336/en
2It only takes into account the considered set of nodes and their neighborhood
3Introduced by A. Rapoport in 1957 and developed by M.S. Granovetter in 1973
4http://fellows-exp.com
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present the user with several highly cohesive groups – which we call egomunities – among their Facebook
friends. For a given user u, the greedy algorithm used in Fellows focuses on his/her neighborhood N (G, u).
The core idea is to group together neighbors in possibly overlapping egomunities, all containing u. We
initialize an egomunity by selecting the node v0 ∈ N (G, u) with highest degree to serve as seed. Thus the
egomunity contains u and v0. From that point we iterate and expand the egomunity by adding neighbors
as long as it is possible to increase the cohesion. If there are several nodes which addition increases the
cohesion, we choose to add the node v which addition maximizes the number of internal triangles �in – and
in the case more than one node satisfies this condition, we select the one which maximizes the number of
outbound triangles �out. Once no more node can be added to the egomunity, we start over by selecting the
highest degree seed from the sets of neighbors which haven’t been assigned to an egomunity and repeat the
process until all neighbors are in at least one egomunity.

The user is then asked to rate each egomunity from one to four stars, answering the question “would you
say that this list of friends forms a group for you?”. The user is also offered the opportunity to instantly
create a Friend List on Facebook corresponding to that group. On the server side, we collect all egomunities
with their cohesion and size. This data will allow us to statistically confront our cohesion model to the
individual perception of egomunities.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600
1 star

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500
2 stars

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400
3 stars

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400
4 stars

Cohesion

(a) Density of cohesion for egomunities of rating 1 to 4. (b) Average rating vs. cohesion.

Figure 1: Experiment early results

Although the Fellows’s experiment is still ongoing at the time of writing, preliminary results are very
promising. 1421 participants took the survey, rating 20805 egomunities and creating 7137 lists. On Fig-
ure 1(a) we group the rated egomunities by rating and represent the distributions of cohesion for each rating.
This shows that on average egomunities with higher rating feature a higher cohesion. Conversely, in Fig-
ure 1(b), we plot the average rating obtained by egomunities grouped by cohesion in slices of width 1/100th.
In turn, this shows that on average, egomunities with higher cohesion tend to obtain higher ratings. Hence
we conclude that the cohesion metric provides an accurate quantification of an egomunity’s quality, in terms
of subjective perception.

Ongoing & futur works. Current and future works focus on other aspects of egomunities and cohesion.
As birds of a feather flock together, we are currently exploring the aggregation of information from egomunities
to infer traits of a user – e.g. their age, gender, Facebook Likes, etc. Another current work lies in the
extension of cohesion to weighted (and/or oriented) networks, by introducing weighted triangles. In a simple
unweighted model of social networks, when two people know each other, their is a link between them. In
real life however, things are more subtle, as the relationships are not quite as binary: two close friends have
a stronger bond than two acquaintances. In this case, weighted networks are a better model to describe
social connections. For this reason, we deem necessary to introduce an extension of the cohesion to those
networks. Finally, we are also considering the possibility of using greedy cohesion maximizing techniques to
compute overlapping communities on whole graphs instead of locally inside the neighborhood of a node.
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Monopoly Pricing in the Presence of Social Learning

Extended Abstract for WIDS 2011

Bar Ifrach∗ Costis Maglaras† Marco Scarsini‡

March 10, 2011

A monopolist will offer a new product to a market of heterogeneous consumers that differ in

their willingness-to-pay for that product. Consumers do not know the true quality of the product,

but estimate it based on a social learning mechanism and make their purchase decision accordingly.

Buyers reveal information about their ex-post utility, specifically if it was positive or negative, but

not their type. So we consider a monopolist that operates in a market whose beliefs about the offer

product evolve dynamically through a social learning process. Questions of interest that we address

are the following: do consumers learn the true quality of the product, and, if so, how fast? taking

into account the dynamics of the learning process, what is the revenue maximizing price? can the

seller use dynamic pricing to affect the learning process and maximize her discounted revenues?

The market. Agents (consumers) sequentially face the decision of purchasing a product with

unknown quality, or choosing an outside option. Each consumer has a willingness-to-pay for the

product that is the sum of an idiosyncratic component, which is assumed to be an iid draw from some

known distribution, and an unknown component that is common across consumers and depends on

the quality of the product.

Information. Agents do not know the true quality of the product. They observe the information

reported by a sample -or potentially all- of the past agents, depending on their social network, and

make an inference about the product quality. If their quality estimate is sufficiently high given their

idiosyncratic valuation parameter, they purchase the product. If they purchase the product, they

further “report” whether their ex-post utility was positive (but they do not report their valuation

parameter). As such, new agents observe the purchase decisions of a sample of past agents, and for

those who bought within that sample they also observe whether they had a positive ex-post utility,

i.e., whether they “liked” or “disliked” the product.

Learning. It is typical to assume that fully rational agents update their beliefs for the unknown

quality of the product through a Bayesian analysis, but this places an extraordinary analytical

and computational onus on each agent that is hard to justify as a model of actual choice behavior.

Instead, we will postulate a naive learning process that does not make use of such Bayesian analysis.

There is a growing literature in economics that studies naive learning mechanisms that employ

simpler and perhaps more plausible learning protocols by each agent, which is also related to the

∗Columbia Business School, 4I Uris Hall, 3022 Broadway, NY, NY 10027. Contact author (bi2118@columbia.edu)
†Columbia Business School, 409 Uris Hall, 3022 Broadway, NY, NY 10027. (c.maglaras@gsb.columbia.edu)
‡LUISS (marco.scarsini@luiss.it)
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growing body of engineering literature on sensor networks and decentralized algorithms. Almost

exclusively the above works focus on the learning dynamics and do not study their interplay with

pricing and revenue optimization in a market setting.

Our model postulates a fairly simple learning mechanism. Given their social network, agents

observe the information reported from a sample of past agents that is summarized by the size of the

sample, the number of people that purchased, and the number of people that purchased and liked

the product. With this information agents form an estimate for the preferences of the marginal

agent that purchased and liked the product, and from that they extract an estimate of the product

quality. In doing so, our agent disregards the learning dynamics, and acts as if all prior agents

made their decisions based on some common belief about the product quality, which is now easy

to characterize.

Convergence of learning process. We first provide a negative result, specifically, that learning

may fail in our model in the absence of experimentation; that is, consumers may not learn -

even asymptotically- the true quality of the product. The underlying issue is that consumers get

censored observations of the product quality, and learning may stop at an inferior quality estimate

where all buyers report that they like the product, thus providing a censored quality estimate. On

the positive side, we show that learning will eventually occur almost surely if consumers employ

any degree of experimentation, or doubtfulness in the accuracy of their predecessors’ decisions.

Learning can be shown to occur for two types of social networks, the one where each agent observes

the entire sequence of past agent decisions, and the one where each agent independently observes

each of his predecessors with some probability but where the size of the sample grows large as the

number of agents increases to infinity. Asymptotic learning also holds if agents weigh each of their

predecessors’ reports differently based on the predecessor’s location on the arrival sequence. We

characterize conditions on these weight trajectories that guarantee asymptotic learning.

Mean-field approximations, learning trajectories and pricing. The speed of convergence, and,

better yet, the learning trajectory over time is essential in capturing the tradeoff between consumer

learning and the monopolist’s discounted revenue objective. We derive a mean filed (fluid model)

approximation for the learning dynamics in an asymptotic regime, where the rate of arrival of new

consumers to the system grows large, and where the mass of each individual consumer proportionally

decreases – this type of scaling is often referred to as uniform acceleration. We show that the

asymptotic learning trajectory is characterized by a differential equation, which in some special

cases is solvable in closed form. We show how the learning speed depends on the weight function

used by consumers, and finally explore the impact of these results on the seller’s pricing decision.
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 Abstract— By combining mobile traffic data and product adoption 

history from one of the markets of the telecom provider Telenor, 

we define and measure an adoption network—roughly, the social 

network among adopters. We study and compare the evolution of 

this adoption network over time for several products – the iPhone 

handset, the Doro handset, the iPad 3G and videotelephony. We 

show how the structure of the adoption network changes over 

time, and how it can be used to study the social effects of product 

diffusion. Specifically, we show that the evolution of the Largest 

Connected Component (LCC) and the size distribution of the other 

components vary strongly with different products. We also 

introduce simple tests for quantifying the social spreading effect 

by comparing actual product diffusion on the network to random 

based spreading models. As videotelephony is adopted pairwise, 

we suggest two types of tests: transactional- and node based 

adoption test. These tests indicate strong social network 

dependencies in adoption for all products except the Doro 

handset. People who talk together, are also likely to adopt 

together. Supporting this, we also find that adoption probability 

increases with the number of adopting friends for all the products 

in this study. We believe that the strongest spreading of adoption 

takes place in the dense core of the underlying network, and gives 

rise to a dominant LCC in the adoption network, which we call 

“the social network monster”. This is supported by measuring the 

eigenvector centrality of the adopters. We believe that the size of 

the monster is a good indicator for whether or not a product is 

going to “take off”.  
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Diffusion and Cascading Behavior

in Random Networks
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Abstract submitted to:

WIDS Workshop on Information and Decision in Social Networks.
The full version of the paper is available at:

http://arxiv.org/abs/1012.2062

The spread of new ideas, behaviors or technologies has been extensively studied using epi-
demic models. Here we consider a model of diffusion where the individuals’ behavior is the
result of a strategic choice. We study a simple coordination game with binary choice and give
a condition for a new action to become widespread in a random network. We also analyze the
possible equilibria of this game and identify conditions for the coexistence of both strategies in
large connected sets. Finally we look at how can firms use social networks to promote their
goals with limited information. Our results differ strongly from the one derived with epidemic
models and show that connectivity plays an ambiguous role: while it allows the diffusion to
spread, when the network is highly connected, the diffusion is also limited by high-degree nodes
which are very stable.

To illustrate our point, consider the basic game-theoretic diffusion model proposed by (Mor-
ris, 2000). Consider a graph G in which the nodes are the individuals in the population and
there is an edge (i, j) if i and j can interact with each other. Each node has a choice between
two possible behaviors labelled A and B. On each edge (i, j), there is an incentive for i and j to
have their behaviors match, which is modeled as the following coordination game parameterised
by a real number q ∈ (0, 1): if i and j choose A (resp. B), they each receive a payoff of q (resp.
(1− q)); if they choose opposite strategies, then they receive a payoff of 0. Then the total payoff
of a player is the sum of the payoffs with each of her neighbors. Consider a network where all
nodes initially play A. If a small number of nodes are forced to adopt strategy B and other
nodes in the network apply best-response updates, then these nodes will be repeatedly applying
the following rule: switch to B if enough of your neighbors have already adopted B. There
can be a cascading sequence of nodes switching to B such that a network-wide equilibrium is
reached in the limit. Most of the results on this model are restricted to deterministic (possibly
infinite) graphs. In this work, we analyze the diffusion in the large population limit when the
underlying graph is a random network G(n,d) with n vertices and where d = (di)

n

1
is a given

degree (i.e. number of neighbors) sequence, similarly to (Jackson and Yariv, 2007).

∗23 avenue d’Italie, 75013 Paris, France, tel:+33(0)1.39.63.55.33, fax:+33.(0)1.39.63.79.88
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In this simple model, agents play a local interaction binary game where the underlying social
network is modeled by a sparse random graph. First considering the deterministic best response
dynamics, we compute the contagion threshold for this model, confirming the heuristic result
of (Watts, 2002). We find that when the social network is sufficiently sparse, the contagion is
limited by the low connectivity of the network; when it is sufficiently dense, the contagion is
limited by the stability of the high-degree nodes. This phenomenon explains why contagion is
possible only in a given range of the global connectivity (i.e. the average number of neighbors).

We identify the set of agents able to trigger a large cascade: the pivotal players, i.e. the
largest component of players requiring a single neighbor to change strategy in order to follow the
change. When contagion is possible, both in the low and high-connectivity cases, the number of
pivotal players is low, resulting in rare occurences of cascades. However in the high-connectivity
case, we found that the system displays a robust-yet-fragile quality: while the cascades are
very rare, their sizes are very large. This feature makes global contagions exceptionally hard to
anticipate.

Motivated by social advertising, we also consider cases where contagion is not possible if the
set of initial adopters is too small, i.e. a negligible fraction of the total population, as in (Galeotti
and Goyal, 2009). We compute the final size of the contagion as a function of the fraction of the
initial adopters. We find that the low and high-connectivity cases still have different features:
in the first case, the global connectivity helps the spread of the conatgion while in the second
case, high connectivity inhibits the global contagion but once it occurs, it facilitates its spread.

We also analyze possible equilibria of the game and in particular, we find conditions for
the existence of equilibria with co-existent conventions. Finally, we analyze a general percolated
threshold model for the diffusion allowing to give different weights to the (anonymous) neighbors.
This model allows us to study rigorously semi-anonymous threshold games of complements with
local interactions on a complex network. Our general analysis gives explicit formulas for the
spread of the diffusion in terms of the initial condition, the degree sequence of the random graph,
and the distribution of the thresholds.

References

Galeotti, A. and S. Goyal (2009). Influencing the influencers: a theory of strategic diffusion.
RAND Journal of Economics 40 (3), 509–532.

Jackson, M. O. and L. Yariv (2007). Diffusion of behavior and equilibrium properties in network
games. The American Economic Review 97 (2).

Morris, S. (2000). Contagion. Rev. Econom. Stud. 67 (1), 57–78.

Watts, D. J. (2002). A simple model of global cascades on random networks. Proc. Natl. Acad.

Sci. USA 99 (9), 5766–5771 (electronic).

2

Page 17
Tuesday, May 31 
11:30A session: Information Propagation



Analysis of Tipping Points in Social Networks

for Diffusion of Innovations

Seulki Lee
KAIST

sklee19@kaist.ac.kr

Hyuna Kim
KAIST

hyunak@kaist.ac.kr

Kyomin Jung
KAIST

kyomin@kaist.edu

Tipping point phenomena (events that had rarely observed becomes suddenly common) for diffusion

of innovations have received huge attention from academia and industry [4,6,12]. Understanding tipping

point phenomena has numerous applications including viral marketing and minimizing the spread of

contamination. Depending on the characteristics of the information and social network structures, the

information either cascades globally or terminates quickly. For example, sometimes new technologies

become widespread over the network (a global cascade), but in some cases they simply disappear in a

short time. In this work, we identify conditions for the occurrence of tipping points for general classes

of network structures and provide a novel proof for its correctness.

Various models of information spreading have been studied. These models are established based on

the common assumption that the neighbors play significant roles for the spread of information. The SIR

(Susceptible-Infected-Recover) model is one of those popular models applied to the cases when accepting

the information requires low costs, such as the epidemics of contagious diseases [1, 2, 8]. Under the SIR

model, some sufficient conditions for a global cascade have been studied [2, 3, 9]. On the other hand,

for the diffusion of new technologies or innovations which requires relatively high costs to adopters, the

linear threshold model is widely used [7, 12, 13]. However, general conditions for a global cascade under

the linear threshold model are known for restricted cases.

In the linear threshold model, individuals make their decisions based on the decisions of their neigh-

bors. Each node has its own threshold value and if the fraction of neighbors who have already adopted

the innovation is greater than the threshold, it will adopt the innovation. The mechanism of this model

is originated from the utility maximization of individuals in game theory.

A tipping point is defined as the number of initial adopters x so that the cascade size becomes

suddenly large as the number increases from x to x+ δ for a small δ. Under the linear threshold model,

the mechanism how a tipping point arises in a complete graph is well known [5]. When the thresholds

of all nodes are homogeneous, the average cascade size and the number of initial adopters that triggers

a global cascade have been predicted in the case of Erdös-Rényi random graph networks [13]. However,

it is known that distributions of thresholds usually follow diverse unimodal distributions such as the

normal distribution [10,11].

In this work, we consider any distributions of thresholds and assume that each node takes its threshold

value from the distribution independently. We first analyze that in a social networks including Facebook

and Myspace, tipping points occur almost always if certain conditions on the distribution of thresholds

are met. We provide a novel proof that under those conditions, a tipping point occurs almost surely for

1
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any graphs whose nodes’ degrees are ω(log n), where n is the number of nodes. Our proof can be applied

to any distributions of thresholds such as the uniform, the normal and homogeneous distributions, and it

works for any class of graphs with reasonably high degrees. We also numerically analyze that in graphs

having nodes with O(log n) degrees, the similar result holds.

Secondly, we conducted extensive experiments on real world social networks such as Facebook and

Myspace, and synthetic network graphs including Erdös-Rényi random graphs, generalized random

graphs with expected degree sequences, and scale-free networks generated by the preferential attach-

ment process. We discover that tipping points indeed appear in these graphs if similar conditions on

threshold distributions are met. In order to investigate properties of tipping points, we performed ex-

periments on various network structures with regard to the network size, degree distributions and their

community structures. We obtain strikingly similar results from several independent network graphs

and conclude that even though some properties of network structures can affect tipping points to some

extent, the distribution of thresholds are much more relevant to them.
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The ultimate proof of our understanding of natural or technological systems is 

reflected in our ability to control them. While control theory offers mathematical 

tools to steer engineered and natural systems towards a desired state, we lack a 

general framework to control complex self-organized systems, like the regulatory 

network of a cell or the Internet. Here we develop analytical tools to study the 

controllability of an arbitrary complex directed net- work, identifying the set of 

driver nodes whose time-dependent control can guide the system’s dynamics. We 

apply these tools to several real networks, finding that the number of driver nodes 

is determined mainly by the network’s degree distribution. We show that sparse 

in- homogeneous networks, which emerge in many real complex systems, are the 

most difficult to control, but dense and homogeneous networks can be controlled 
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via a few driver nodes. Counterintuitively, we find that in both model and real 

systems the driver nodes tend to avoid the hubs. We show that the robustness of 

control to link failure is determined by a core percolation problem, helping us 

understand why many complex systems are relatively insensitive to link deletion. 

The developed approach offers a framework to address the controllability of an 

arbitrary network, representing a key step towards the eventual control of 

complex systems.  
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Information Flow and Active Social Influence in Social Networks

Georgios C. Chasparis∗ Jeff S. Shamma†

March 10, 2011

When individuals in a social network exchange information, beliefs or opinions through their immediate connec-
tions, the following questions naturally emerge:

1. What are the social networks which most likely formwhen individuals are concerned with the efficient and
effective dissemination ofendogenousinformation through the network?

2. Given a network of connections,what is the optimal targeting policyfor which anexogenousbelief can be
adopted to the largest extent by the network?

The above questions, although different, overlap to a large degree. On the one hand, we recognize that individuals
are dynamically changing their links to search for efficient information flow through the network. In this case, we are
interested to know what are the networks which most likely are going to form. On the other hand, when information or
beliefs are exogenously implanted to the network, adoption of these beliefs will highly depend on which individuals are
initially targeted and what is their influence to the network (i.e., their centrality measure). In the following discussion,
we analyze these two questions independently.

The first part of this discussionis motivated by the current research on social network formation [1, 2] and how
social networks form when individuals have discretion over the links they establish or sever. We model the problem
as a noncooperative game, where each individual makes decisions based on myopic considerations, i.e., so that its
own utility is maximized. Links are assumed unidirectional, which model phenomena such as web links, observations
of others, citations, etc. [2]. The utility considered for each individual reflects the ability to disseminate information
efficiently through the network similarly to [3, 4].

Several models for endogenous network formation have been proposed that are based on game theoretic formula-
tions. These includestatic models, [3], where agents play an one-stage game, with actions corresponding to network
links. These studies characterize networks in terms of the Nash equilibria of the associated game, calledNash net-
works. The processes under which such equilibria emerge are proposed viadynamicor evolutionarymodels [4, 5, 6].
In these models, players adaptively form and sever links in reaction to an evolving network, and in some models, their
decisions are subject to small random perturbations.

Our approach is also concerned with dynamic or evolutionary models, and is mostly related to the papers of
[4, 5]. Our contributions are the following: i) We discuss the case where nodes can form links only with a subset
of the other nodes (i.e., neighborhood structures), as opposed to the entire network; ii) We introduce utility functions
that are distance-dependent variations of theconnections modelof [3] and guarantee that Nash networks exist; iii)
We introduce state-dependent utility functions that can model dynamic phenomena such asestablishment costs; iv)
We derive a learning process that guarantees convergence to Nash equilibria for the state-based extension of weakly
acyclic games; and v) We employpayoff-baseddynamics for convergence to Nash networks based on a reinforcement
learning scheme and drop the typical assumptions that nodes have knowledge of the full network structure and can
compute optimal link decisions.

The second part of this discussionis concerned with the derivation of optimal targeting policies for the diffusion
of beliefs in a social network. Equivalently, we may think of the targeting policies as advertising strategies and the

∗G. Chasparis is with the Department of Automatic Control, Lund University, 221 00-SE Lund, Sweden; E-mail: geor-
gios.chasparis@control.lth.se; URL: http://www.control.lth.se/chasparis.
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individuals as customers. Contrary to the first part of the discussion, here the network is assumed constant and the
customers’ preferences are affected by both their neighbors and the incentives provided through advertising. Our
contribution lies in the inclusion of three important factors in the derivation of an optimal advertising strategy: i)
dynamic network effects in the formation of preferences, ii) possible misspecifications/uncertainties in the assumed
model of evolution of preferences, and iii) uncertainty in the intentions of a competitive firm that also tries to influence
the network.

Prior work has focused on i) the derivation of dynamic models which capture the sales response to advertising, and
ii) the computation of an optimal policy of advertising as a function of the sales. Those models which capture the effect
of advertising on sales, usually assume the following behavior: i) advertising effects persist over the current period but
diminish with time [7], ii) marginal advertising effects diminish or remain constant with the size of advertising [8],
iii) advertising effects diminish with the size of sales [7], iv) advertising effects diminish with the size of competitive
advertising [9], and v) advertising effects are affected by word-of-mouth communication (or excess advertising) [10].

Our model is related to the sales response models [7] (which capture the evolution of the rate of sales) and dif-
fusion models [11] (which capture the market growth). It exhibits diminishing returns with time in the absence of
advertising effort, constant marginal returns with the size of advertising, and diminishing returns with the size of
competitive advertising. It emanates from traditional advertising models by also considering the effect of word-of-
mouth communication through a network of interactions similarly to [12]. The difference here is that the dynamics of
preferences become part of the optimization. We derive analytically optimal advertising strategies and relate them to
centrality measures usually considered in sociology [13]. This result also establishes a connection with the first part
of our discussion, since nodes of high centrality measure can be provided through an analysis of endogenous network
formation.

We also consider the possibility that we are uncertain of the accuracy of the model of preferences’ update, instead
of assuming a deterministic update. This form of uncertainty is usually neglected in prior work on optimal advertising.
We derive optimal policies which are robust to a norm-bounded uncertainty. We show that the model exhibits a
certainty equivalence property, since the optimal policy for the perturbed model coincides with the optimal policy for
the unperturbed model. Finally, we consider the possibility that a competitive firm also tries to influence the network,
introducing a second form of uncertainty. In this case, we compute robust optimal policies through the notion of
Stackelberg and Nash solutions.
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Structural Analysis of Information Dissemination in Large-Scale Networks
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During the last decade, the complex structure of many large-scale networked systems has at-

tracted the attention of the scientific community. The availability of massive databases describing

these networks allow researchers to explore their structural properties with great detail. Statistical

analysis of empirical data has unveiled the existence of multiple common patterns in a large vari-

ety of network properties, such as power-law degree distributions, or the small-world phenomenon.

Aiming to replicate these structural patterns, a rich variety of synthetic network models has been

proposed in the literature, such as the classical Erdös-Rényi random graph and its generalizations,

the preferential attachment model proposed by Barabási and Albert, or the small-world network

proposed by Watts and Strogatz.

Synthetic network models are useful to analyze the performance of communication protocols, as

well as to predict and control network evolution, and to study network reliability and survivability.

In this direction, a fundamental question is to understand the impact of a particular structural

property in the performance of the network. The most common approach to address this question

is to use synthetic network models in which one can prescribe the structural property under study.

The impact of structural features, such as degree distributions, clustering, correlations, or hierarchy,

has been widely studied in the literature via synthetic network models. Although this approach is

very common in the literature, it presents two major flaws:

1. Synthetic network models implicitly induce many structural properties that are not directly

controlled and can be relevant to the network dynamical performance. Therefore, it is difficult

to isolate the role of a particular structural property in the network performance using synthetic

network models.

2. There is no systematic technique to decide what structural properties are most relevant to the

network dynamical performance.

In this paper, we propose an alternative approach that overcomes the two issues mentioned above.

Our approach is based on studying how structural properties of the network, such as the distribu-

tion of degrees, triangles and other substructures, impose bounds on performance metrics of the

network. In our analysis, we exploit the close relationship between the eigenvalues of a network

and the performance of many dynamical processes taking place in the network, in particular, the

performance of viral spreading processes. Our work builds on algebraic graph theory and convex

optimization to find optimal bounds on relevant spectral properties of networks from structural

information. We illustrate our approach by studying epidemic-style processes of information dis-

semination in networks. Our results are relevant in many real scenarios, from rumor spreading in

online social networks, to malware propagation in computer networks, or information dissemination

in communication networks.

∗Electronic address: preciado@seas.upenn.edu;jadbabai@seas.upenn.edu
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‘Friendship-based’ Games

PJ Lamberson�

Abstract

This paper analyzes a model of games played on a social network that
employs a ‘friendship-based’ approach, which allows for local correlation in
players’ strategies. The model is applied to two specific classes of games,
games of strategic complements and strategic substitutes. We also examine
the dependence of diffusion on network clustering – the probability that two
individuals with a mutual friend are friends of each other – which is not possi-
ble in previous frameworks. We find that clustering has a negative impact on
welfare in games of substitutes, but has a positive impact in games of com-
plements. These results imply that clustering may lead to redundant over-
provision of public goods, but can help beneficial new technologies break
into a market that is dominated by a less preferred standard.

People rarely make decisions in isolation. Often, the choices and experiences
of friends, family, and acquaintances shape our beliefs and behavior. This observa-
tion motivates a stream of recent research that addresses the effects of social net-
work structure on behavior (Jackson and Yariv, 2005, 2007; Jackson and Rogers,
2007; López-Pintado, 2008; Lamberson, 2009, 2010; Galeotti et al., 2010). All of
these articles employ a “mean-field analysis” borrowed from physics to understand
how equilibrium diffusion levels depend on the structure of social interactions.

The mean-field approach requires one of two interpretations. Either, the anal-
ysis is thought of as an approximation to the true diffusion dynamics, or agents
are assumed to have limited information about their social contacts: the agents act
as if the behavior of their neighbors matches the behavior of the population as a
whole. In order to gain analytic tractability, the method discards much of the con-
nectivity information of an actual network, retaining only the underlying degree
distribution. In particular, correlation in neighboring agents’ behavior is lost. For
example, in an epidemic sick people are more likely to be connected to other sick
people, and when a new technology spreads technology adopters are more likely to
be connected to other adopters. These effects are lost in the mean-field approach.

�MIT Sloan, E62-441, Cambridge, MA 02139. pjl@mit.edu.
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This paper develops an alternative framework that keeps track of local corre-
lations using a “pair approximation” (Matsuda et al., 1992; Keeling et al., 1997;
Morris, 1997; Van Baalen, 2000). In this model, the focus is on friendship ties
rather than individual actors, so we refer to it as a ‘friendship-based’ game. Our
paper is most closely related to the “network games” framework of Galeotti et al.
(2010). However, the partial information structure of the network games frame-
work corresponds with a mean-field approximation rather than the pair approxima-
tion that we employ. From an information perspective the friendship-based game
allows us to capture a richer information structure – rather than assume that an
agent expects her neighbors to play like the population as a whole (conditional on
her degree), we assume that the agent expects her neighbors to play like the popu-
lation conditional on her own behavior. If we think of both the network games and
friendship-based games as approximations to a process occurring in a fixed social
network, simulations demonstrate that the additional information regarding local
correlations included in the friendship-based model lead to more accurate results.

We apply the model to two classes of games, games of strategic complements
and games of strategic substitutes. We find that games of strategic complements
tend to exhibit multiple adoption equilibria separated by a tipping point analo-
gous to the “epidemic threshold” in disease spread models. Locally, agents rapidly
split into clusters using competing strategies. Games of strategic substitutes tend
towards a unique equilibrium. Agents strategies are locally dissociative. For exam-
ple, if we think of the model as capturing provision of a public good, a few agents
serve the role of local providers of the good while their neighbors free ride. For
substitutes, the friendship-based framework predicts a more efficient outcome than
the network games framework because agents take more information into account
in their decision.

We also extend the framework to take network clustering into account. In many
empirical settings, two agents that share a mutual friend are likely to be friends of
each other (Newman and Park, 2003; Watts, 2004). This feature, known as clus-
tering or triadic closure, cannot be modeled using a mean-field approach. After
adjusting the friendship-based model to incorporate clustering we examine the de-
pendence of predicted equilibria in games of complements and substitutes on clus-
tering as quantified by the clustering coefficient of the network. We find that in
games of substitutes clustering decreases efficiency. In the case of public goods
provision, this implies that clustered networks require more agents to provide the
public good than non-clustered networks. In contrast, in games of complements
clustering increases total welfare by helping new beneficial technologies break
into a market that is dominated by a less preferred standard. Intuitively, cluster-
ing protects the new technology by shielding tightly coupled communities of early
adopters from the current standard.
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On Global Games of Regime Change in Networks with

Non-Binary Payoffs

M. Dahleh, A. Tahbaz-Salehi, J. Tsitsiklis, and S. Zoumpoulis∗

Global games of status quo subversion — coordination games of incomplete information in which

a status quo is abandoned once a sufficiently large fraction of agents attacks it — have been used

to study crisis phenomena such as currency attacks (e.g., Morris and Shin [1998]), debt crises (e.g.,

Morris and Shin [2004]), bank runs (e.g., Goldstein and Pauzner [2005]), and political regime change

(e.g., Edmond [2005]).

To the best of our knowledge, all existing applications of such games to crises assume a continuum

of agents and a private (and possibly, in addition, a public) noisy signal of the fundamentals for each

agent (there are no complex patterns of communication among the agents). In this work, we propose

a model involving a discrete number of agents, interconnected through an underlying network.

We study a game of regime change with a finite number of agents, in which each agent receives

and shares noisy signals concerning the strength of the status quo (i.e., the fundamentals) according

to her position in a social network. She can then either attack the status quo or not attack. Attacking

can net a positive or negative payoff and is thus a risky action. Not attacking nets 0 payoff and is

thus a safe action. In contrast to most of the literature on regime change, we assume a non-binary

payoff structure. It is common in the relevant literature (e.g., Angeletos et al. [2007]) to model games

of regime change so that payoffs incur a discrete change when the regime changes. In those models,

the outcome of a collective attack against the regime is determined by the relative strength of the

collective attack and the regime; once the outcome is determined, individual payoffs for attackers

depend merely on the (binary) outcome, not on the relative strength of the collective attack and the

regime. We consider a variation in which payoffs are not discrete: individual payoffs for attackers

depend directly on the relative strength of the collective attack and the regime.

Our game admits a variety of interpretations and applications, in all of which beliefs have the

∗All authors are with the Laboratory of Information and Decision Systems, at MIT. Their emails are {dahleh, alirezat, jnt,
szoumpou}@mit.edu.
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same self-fulfilling nature. Prominent examples are currency attacks (when a large speculative attack

forces the central bank to abandon the peg), bank runs (when a large number of bank customers

withdraw their deposits because they believe the bank is, or might become, insolvent), debt crises

(when a country/company fails to coordinate its creditors to roll over its debt and is hence forced

into bankruptcy), and political protests (when a large number of citizens decide whether or not to

take actions to subvert a repressive dictator or some other political establishment).

In this work we seek to quantify the connection between the topology of the social network and

the predictability of individual behavior in large networks, as well as the connection between the

topology of the social network and individual attitude towards risk. We provide an algorithm for the

characterization of strategies that survive IESDS for any finite network that is a union of disconnected

cliques. We prove that for each agent, all the information about the strength of the status quo can be

summarized in a one-dimensional statistic, the average of the observations: in any strategy profile

that survives IESDS, each agent chooses the risky action (attack) if the average of her observations

is less than a threshold tR, and chooses the safe action (not attack) if the average of her observations

is greater than some threshold tS ; in addition, any strategy profile that satisfies these two conditions

survives IESDS. For the special case of cliques of equal size, we provide a characterization involving

closed-form analytical expressions.

In a network consisting of finitely many disconnected agents, there is a unique strategy profile that

survives iterated elimination of strictly dominated strategies, and therefore a unique Bayesian Nash

equilibrium; we argue that for a finite network, a single link suffices to induce multiplicity. Of more

interest is the asymptotic regime (as the number of agents grows large), in which some non-trivial

network topologies guarantee uniqueness; we obtain sufficient conditions on the network topology

for uniqueness in the asymptotic regime.

As Angeletos and Werning [2006] put it, “it is a love-hate relationship: economists are at once

fascinated and uncomfortable with multiple equilibria.” In this work, we identify the social network

topology as the determining factor with respect to the dichotomy between multiplicity and unique-

ness. In the economic literature, common knowledge of the fundamentals leads to the standard case

of multiple equilibria due to the self-fulfilling nature of agents’ beliefs. Morris and Shin [1998, 2000]

and others propose that multiplicity vanishes once the economy/society is perturbed away from the

perfect-information benchmark. We show that perturbation may or may not induce uniqueness in the

context of a social network of discrete agents, depending on how the noisy signals are communicated,

in other words depending on the topology of the social network.

2
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Abstract

In social networks, agents typically seek to achieve a task with some knowledge of
their neighbors or immediate friends. Consensus is one of the fundamental and
pivotal problems in social sciences involving a large number of distributed agents
reaching consensus in their opinions, resources, security, etc. In this paper, we
use a differential game-theoretic approach to model the dynamic interactions
among a large number of consensus-seeking agents in social networks. Such
an approach to consensus provides a theoretical basis for incentive mechanism
design and for the construction of optimal defense strategies in an adversarial
environment. In this framework, each agent aims to find a local optimal control
to reach an agreement with its neighbors with minimum control effort. The
model we adopt is one of linear-quadratic nonzero-sum differential games defined
on an infinite horizon with discounted cost, which we study under different
information structures and with a view to consensus. We characterize the open-
loop (OL) and strongly time-consistent closed-loop (STC CL) Nash equilibrium
(NE) strategies for finite population and large population regimes. For the finite
population game, the STC CL NE strategy of each agent is affine in the states
of its neighbors and consensus is achieved depending on the initial states of
the agents. For a large homogeneous population, the STC CL NE requires the
solution of a nonlinear PDE that describes the state evolution of the population,
which is coupled with a set of coupled algebraic Riccati equations. We study the
relationship between OL and STC CL as the population or the neighborhoods
grow.

∗Submitted to May 2011 MIT LIDS Workshop on Decision Making in Social Networks.
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In the paper, we also inject into the network a population of malicious agents
who selfishly force the social network to reach consensus at their own target
value. We study the effect of such malicious agents on the consensus process and
investigate the two-population interactions when the number of malicious agents
is large. We propose a sub-optimal solution for a simplified analysis of consensus
in an adversarial environment and a dynamic trust management mechanism for
agents to defend themselves against malicious agents. Presentation of some
simulation results wraps up the paper.

We provide below a list of selected relevant bibliography.
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I. INTRODUCTION

Crowdsourcing systems, such as Amazon Mechanical Turk
[Mec], establishes a marketplace where small tasks are dis-
tributed through an open call to a large and undefined group
of people called a ‘crowd’. A typical crowdsourcing begins
with a requester broadcasting a large number of simple tasks
to the crowd. The workers respond by submitting solutions
to the tasks. The requester then verifies the solutions to make
a decision whether to reject or approve each of the solutions.
Workers are typically only rewarded for the solutions that are
approved.

The kind of problems well-suited for crowdsourcing are
problems which involve large data sets and can be easily
broken down into a large number of small tasks. Examples
include product categorization, document labeling, and im-
age and video annotation. These simple tasks are routinely
completed on general purpose crowdsourcing systems like
Amazon Mechanical Turk [Mec] or Crowd Flower [Cro],
often at lower prices than in-house or traditional outsourc-
ing solutions. Further, these platforms can be integrated
to perform specialized and more complex tasks such as
transcription [Cas] and proofreading [BLM+10], [Soy].

Consider the following document labeling example
[IPW10]. Each worker is given a set of web sites and has
to decide if there is any adult content on each site. While
some workers are diligent and give accurate labels to each
sites, there might be spammers who give random labels.
Given these labels with limited accuracy, a requester needs
to achieve two goals. First, she needs to estimate the correct
labels of the sites. If each site is assigned to a single worker,
sites labeled by spammers have no chance of being corrected.
Next, she needs to correctly identify who the spammers
are and reward those that are diligent. Frequent incorrect
identifications might lead to rejecting diligent workers and
eventually ruin the reputation of the requester. However,
oftentimes the cost of verifying a submitted solution is
comparable to that of solving the task. A common solution to
both of these challenges is to introduce redundancy: assigning
each task to multiple workers and each worker to multiple
tasks. Since any intervention from the requester is costly, we
want a fully unsupervised and automated procedure to (i)
design which tasks should be assigned to which workers;
and (ii) infer the quality of workers and the solution to the
tasks.

A naive approach to exploiting the redundancy is to use
majority voting to identify the correct solutions. However, as
we will see in the following sections, majority voting can be
significantly improved upon. To fully exploit redundancy, we
need to infer the quality of the workers simultaneously while
inferring the solutions of the tasks. Dawid and Skene [DS79]
proposed an iterative algorithm for inferring the solutions
and quality of workers, based on expectation maximization.
The algorithm first estimates the quality of the workers by
comparing the submitted solutions to the estimated solutions.
Then, the solutions are estimated based on the submitted
solutions and the estimated quality of the workers. The
algorithm iterates these two steps until convergence.

In the following, we first introduce a simple and effective
model to describe the interactions between the tasks and the
workers. Then, we propose a novel and efficient message
passing algorithm to infer the solutions of the tasks, inspired
by belief propagation. We show that when each task is
assigned to a fixed number l of random workers (and each
worker is assigned a fixed number r of random tasks),
the probability of making an incorrect estimation decays
exponentially in the redundancy: the number of workers
assigned to each task. It proves that it is possible to iteratively
infer the quality of the workers and the solution of the tasks
to achieve performance significantly better than majority vot-
ing. Further, the computational complexity of the proposed
algorithm is linear in the problem dimension m.

II. MODEL DEFINITION

As problems involving a large number of small tasks are
well-suited for crowdsourcing, we model a crowdsourcing
system as a set of m tasks ti for i ∈ {1, . . . ,m} associated
with ‘correct’ answers si ∈ {±1} and a set of n workers
wa for a ∈ {1, . . . , n}. We characterize the quality of each
worker with a single parameter pa ∈ [0, 1]. When task ti
is assigned to a worker wa, the worker submits an answer
Aia ∈ {±1}. We assume that the event that an answer is
correct, Aia = si, happens with probability pa independent
of any other event.

Let [N ] = {1, . . . , N} denote the set of first N integers.
The submitted answers can be represented by a weighted
bipartite graph G

(
{ti}i∈[m], {wa}a∈[n], E,A

)
. E ⊂ [m]×[n]

is the set of edges where nodes ti and wa are connected if
task ti is assigned to a worker wa. To each edge (i, a), we
assign a weight Aia. With a slight abuse of notations, we use
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A ∈ {0,±1}m×n to denote the weighted adjacency matrix
of the graph G.

We assign tasks according to a (l, r) random regular graph.
Let the degree of a node denote the number of neighbors of
the node in the graph. We wish to construct graphs with
regular fixed degrees. Given a degree pair (l, r) such that
lm = rn. Among all graph realizations with regular (l, r)
degree, we choose one uniformly at random. This is called
the configuration model in a random graph literature [RU08],
[Bol01].

Throughout this paper, we use boldface characters to
denote random variables and random matrices. We assume
that the quality of workers, represented by random variables
{pa}, are independent and identically distributed according
to a probability measure µ on [0, 1].

III. ALGORITHM

The algorithm operates on a set of messages x(k)i→a, y
(k)
a→i ∈

R associated with the edges in the bipartite graph
G
(
{ti}i∈[m], {wa}a∈[n], E,A

)
. First, the messages {y(0)a→i}

are initialized as independent copies of a Gaussian random
variable with mean one and variance one. The algorithm
is not sensitive to a specific initialization as long as the
distribution has non-zero mean and is independent of the
problem size m. At each iteration k the messages are updated
according to the following rule:

x
(k)
i→a =

∑
b∈∂i\a

Aiby
(k−1)
b→i ,

y
(k)
a→i =

∑
j∈∂a\i

Ajax
(k)
j→a ,

where ∂i and ∂a are the sets of neighbors of nodes ti and
wa respectively, and ∂i \ a is the set of all neighbors of
node i excluding node a. After a pre-defined number of
iterations k, an estimation of the correct si is made according
to sign(x̂

(k)
i ), where

x̂
(k)
i =

∑
b∈∂i

Aiby
(k−1)
b→i .

When x̂(k)i = 0 for some task ti, we flip a fair coin to make
a decision.

IV. MAIN RESULTS

When an edge (i, a) is chosen uniformly at random, the
distribution of the messages x(k)i→a and y(k)a→i are characterized
by the following evolution of random variables x(k) and y

(k)
p .

Since we initialize the messages {y(0)a→i} using a Gaussian
distribution, we initialize y(0) with the same Gaussian dis-
tribution: y

(0)
p ∼ N(1, 1). Let d

= denote that the random
variables are equal in distribution. Then, for k ∈ {1, 2, . . .},

x(k) d
=

l−1∑
i=1

z
(k)
pi,i

y
(k−1)
pi,i

, y(k)
p

d
=

r−1∑
j=1

z
(k)
p,jx

(k)
j , (1)

where x
(k)
j for j ∈ {1, . . . , r − 1} are independent copies

of x(k), pi for i ∈ {1, . . . , l − 1} are independent copies
of p which is distributed as according to µ, y

(k)
p,i for i ∈

{1, . . . , l − 1} are independent copies of y
(k)
p , and z

(k)
p,i ’s

and z
(k)
p,j ’s are independent copies of zp. z(k)pi,i

and y
(k−1)
pi,i

are
independent conditioned on pi, z

(k)
p,j and x

(k)
j are independent

random variables, and

zp =

{
+1 with probability p ,
−1 with probability 1− p .

For a task node ti chosen uniformly at random, the
decision variable x̂(k)i is characterized by

x̂(k) d
=

l∑
i=1

z
(k)
pi,i

y
(k−1)
pi,i

. (2)

To simplify the notations, let l̂ ≡ l − 1, r̂ ≡ r − 1, q0 ≡
E[2p− 1], and q ≡ E[(2p− 1)2]. Define

σ2
k ≡ 5l̂2(l̂r̂)k−1 + q0

2 l̂3r̂(4 + qr̂)(ql̂r̂)2k−2 1− (1/q2 l̂r̂)k−1

(q2 l̂r̂ − 1)l̂r̂
,

=
q0

2 l̂3r̂(4 + qr̂)(ql̂r̂)2k−2

(q2 l̂r̂ − 1)l̂r̂
+ o
(
(ql̂r̂)2k−2) ,

for q2 l̂r̂ > 1. Then we can show the following bound on the
probability of making an error.

Theorem IV.1. Assume l̂r̂q2 6= 1. Then,

P
(
x̂(k) < 0

)
≤ exp

{
−1

2

l3q0
2(l̂r̂q)2k−2

(l − 1)σ2
k

}
. (3)

As the number of iterations k grows large, the above upper
bound converges to a non-trivial limit when the degrees are
large enough: q1 l̂r̂ > 1.

Corollary IV.2. For l̂r̂q2 > 1,

lim
k→∞

P
(
x̂(k) ≤ 0

)
≤ exp

{
−1

2

l3(l̂r̂q2 − 1)

(l − 1)3(4 + r̂q)

}
. (4)
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Asymptotic Learning on Social Networks

Elchanan Mossel∗, Allan Sly†and Omer Tamuz‡

March 14, 2011

In his seminal Agreement Theorem, Aumann (1976) showed that two rational agents who re-
peatedly share their beliefs must converge to identical opinions and cannot “agree to disagree”.
This result was later extended to apply to a group of agents connected by a social network (see,
e.g., Geanakoplos (1992)).

The eventual common belief depends on the different pieces of information that were initially
available to the individuals. It is natural to ask how well this information is aggregated; how well
do the agents learn from each other? We show that asymptotically learning is indeed efficient.

We consider a finite number of agents connected in a social network, with S ∈ {0, 1} a binary
state of the world which the agents are interested in knowing. The agents are initially provided
with noisy (but informative) independent signals regarding S. They proceed to iteratively share
their belief regarding the state of the world, telling their neighbors in each iteration what they
think the probability of the event S = 1 is, and thus learning from each other.

The Agreement Theorem and its extensions guarantee that the agents converge to a common
belief. We show that as the size of the network tends to infinity this limiting common belief becomes
more precise: given ε > 0 and assuming S = 1, for large enough networks the agents will converge
to a belief that assigns the event S = 1 a probability that is larger than 1− ε.

Following Gale & Kariv (2003) we additionally consider a more restricted communication model.
Here each agent must in each iteration choose an action in {0, 1}, where the optimal action equals
the unknown state of the world. The agents learn by observing their neighbors’ actions, and
so gain far less information regarding each others’ beliefs than in the previous model. Here too
we show that under weak conditions, for large networks, the agents eventually take the correct
action with probability arbitrarily close to one. This is in contrast to other results (on slightly
different models) which exhibit “herd behavior” or “information cascades” (e.g., Banerjee (1992),
Bikhchandani, Hirshleifer & Welch (1992)), where it is possible that the wrong action is taken with
probability bounded away from zero.

∗UC Berkeley and the Weizmann Institute of Science. Supported by a Sloan fellowship in Mathematics, NSF
awards DMS 0528488 and DMS 0548249 (CAREER), and ONR grant N0014-07-1-05-06.
†Microsoft Research.
‡Weizmann Institute of Science. Supported by ISF grant 1300/08.
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Opinion fluctuations and persistent disagreement in

social networks
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March 11, 2011

Disagreement among individuals in a society, even on central questions
that have been debated for centuries, is the rule; agreement is the rare
exception. How can disagreement of this sort persist for so long? Most
existing models of communication and learning, based on Bayesian or non-
Bayesian updating mechanisms, typically lead to consensus provided that
communication takes place over a strongly connected network. (See, e.g.,
Smith and Sorensen ’00, Banerjee and Fudenberg ’04, Acemoglu et al. ’10,
Bala and Goyal ’98, Gale and Kariv ’03, De Marzo et al. ’03, Golub and
Jackson ’10, Acemoglu et al. ’11) These models are thus unable to explain
persistent disagreements, and belief fluctuations.

In this work, we propose a tractable model that generates long-run
disagreements and persistent opinion fluctuations. Our model involves a
stochastic gossip model of continuous opinion dynamics in a society consist-
ing of two types of agents: regular agents, who update their beliefs according
to information that they receive from their social neighbors; and stubborn

agents, who never update their opinions and might represent leaders, polit-
ical parties or media sources attempting to influence the beliefs in the rest
of the society. When the society contains stubborn agents with different
opinions, the belief dynamics never lead to a consensus (among the regular
agents). Instead, beliefs in the society almost surely fail to converge, the
belief profile keeps on oscillating in an ergodic fashion, and it converges in
law to a non-degenerate random vector.

∗Economics Department, Massachusetts Institute of Technology, daron@mit.edu.
†Laboratory for Information and Decision Systems, Massachusetts Institute of Tech-

nology, giacomo@mit.edu
‡Dipartimento di Matematica, Politecnico di Torino, Italy, fabio.fagnani@polito.it
§Laboratory for Information and Decision Systems, Massachusetts Institute of Tech-

nology, asuman@mit.edu
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controlled matrices, indexed by the vector u := [u1, · · · , ud]T . The per step
reward is

∑m
i=1 xk(i) := 1Txk where 1 is the vector of all 1’s, and the per

step cost is
∑d−m
i=1 c2(i)f(νk(i)) +

∑m
i=1 c3(i)g(uk(i)) for prescribed f, g. Let

f(ν) := [f(ν1), · · · , f(νd)]
T for ν := [ν1, · · · , νd]T , where νj = 0 for j ≤ m by

convention. Define u, g(u) analogously, with ui = a prescribed u0 for i > m.
We consider the stationary problem:

Maximize over (u, ν) the quantity

Max(u,ν) 1Tx− cT2 f(ν)− cT3 g(u)

subject to the constraints

x = P ux+ P̄ uν.

We map this problem to a somewhat non-classical Markov decision process
and use the techniques of Markov decision theory to propose algorithms for
its resolution.

More generally, one can consider the transition matrix P̃ indexed by
two controls, say P̃ u,v := [[p(j|i, ui, vi)]], where the vis are controlled by
an adversary. This maps to a stochastic game problem which can also be
addressed in a similar manner.

2
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‘I get by with a little help from my friends.’

We consider a stylized model of opinion formation in which an individual
agent pursues her interest, but also takes into account what the peers say.
Specifically, the agent in question, say the ith out of d of them, holds an
‘opinion’ xk(i) ∈ R at time instant k and polls a peer j with probability
p(i, j), this being the (i, j)th element of a stochastic matrix P . Let ξk(i)
denote the (random) identity of the peer who has been polled. She then
updates her opinion incrementally according to

xk+1(i) = xk(i)+γ[αi(
∑
j

I{ξk(i) = j}xk(j)−xk(i))+(1−αi)fi(xk(i))], (1)

where 0 < αi < 1 is the weight she attaches to ‘peer pressure’ while attaching
weight (1− αi) to her own ‘inclination’ fi(xk(i)), where the fis are bounded
continuous. As an example of the latter, consider, e.g., fi := ∇g where
g represents a common ‘payoff landscape’ the agents share. Here γ > 0
is a stepsize ensuring the incremental nature of the learning process. We
consider the case fi = f ∀i. Let F (x1, · · · , xd) := [f(x1), · · · , f(xd)]

T , A :=

1
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diag(α1, · · · , αd). Then one can view (1) as a constant stepsize stochastic
approximation algorithm with the o.d.e. limit

ẋ(t) = A(P − I)x(t) + (I − A)F (x(t)). (2)

Using the Hirsch theorem for cooperative o.d.e.s, one can show that this
generically converges. We consider the case where the scalar o.d.e.

ż(t) = f(z(t)) (3)

converges to one of finitely many equilibria for any initial condition. If x∗ ∈ R
is one such equilibrium, then [x∗, · · · , x∗]T is an equilibrium for (2). The
latter, however, can also have other, ‘mixed’ equilibria. Assuming that P is
irreducible, one necessary condition for any x̂ ∈ Rd to be an equilibrium of
(2) is that ∑

i

πif(x̂(i)) = 0, (4)

where π = [π1, · · · , πd]T is the unique stationary distribution under P . We
investigate the role of αis in bringing about consensus or disagreement of
opinions.

We also consider the case of ‘opinion manipulation’ where some, say m <
d agents fix their opinions to some prescribed equilibrium x∗ of (3) for all k.
Let x̃k denote the opinions of the remaining agents. One can then show that
they cannot converge to [x′, · · · , x′]T for some equilibrium x′ of (3) other
than x∗, whereas if αis are close enough to 1 (i.e., everyone succumbs to
peer pressure), [x∗, · · · , x∗]T is the only equilibrium, i.e., a consensus on the
desired opinion is obtained. As αis decrease, one can get mixed equilibria.
The situation is even more complex if we replace the scalar valued f by
a vector valued function. We explore this phenomenon through numerical
experiments.

2
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Abstract

The incredible inter-personal connectivity offered by modern social networking tools facili-
tates a fundamental human need for interaction, and in doing so can enact a profound impact
on our professional, political, and social lives. At the same time, however, the essential connec-
tivity afforded by these tools by its very nature impacts our privacy and re-defines our notions of
trust. The consequent grave concerns regarding information security in modern social networks
badly require study, and in fact both a philosophical and technical literature on security of
social networking capabilities has developed recently. While much of the technical research has
focused on allowing users to define trust and protect information in particular social network
tools, our viewpoint is that the extent of possible information discovery (and, conversely, infor-
mation security) in a social network is an intrinsic consequence of the network’s connectivity.
We thus believe that fundamental relationships between the graph topology of a social network
and the discovery/security of information can be found.

In this talk, we will draw on several recent graph-theoretic characterizations of estimator
performance in complex dynamical networks (developed by our group and others), to obtain
graph-theoretic characterizations of security and discovery in abstract models for social net-
work interactions. We will focus on two simple models for social interactions: 1) a classical
linear model describing distributed consensus among networked agents, in which agents update
their personal opinions based on interactions with neighbors as well as multiple local storage
variables (memory variables) so as to quickly reach a fair consensus; 2) a stochastic automaton
model known as the influence model, that has been used to represent such diverse phenom-
ena as human conversation patterns, discrete-valued consensus algoriths, idea propagation, and
self-grouping of network agents. For both models, we will imagine an observer—whether an
adversary or a benign player—as accessing noise-corrupted state statistics of particular agents
in the network. We will explore how the the graph-topology of the network, together with
specifics of local dynamics and the observer’s sensing capability, impact the observer’s ability
to estimate the full network state or important statistics defined thereof (for instance, initial

1
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opinions of certain important hidden network components or agents).

The graph-theoretic characterizations of security and discovery for social networks that we
will present derive from recent graphical analyses of dynamical-network estimation. These
graphical analyses of network estimation, which were originally motivated by sensor-design
needs in infrastructure networks, are based on combining classical estimation theory with alge-
braic graph theory constructs. Precisely, the graphical analysis is initiated from classical alge-
braic expressions of state/topology estimators and of the estimation error. With some effort,
these algebraic expressions can be phrased in terms of the spectrum of a matrix representing the
graph topology, together with the specifics of the observation paradigm and network-component
model. In turn, algebraic graph theory constructs can be used to translate the spectral condi-
tions to explicit graph-theoretic characterizations of estimator structure and performance, and
to compare estimator performance for different graph classes (e.g., random graphs vs. small-
world or coherently-structured graphs). We will apply these graphical analyses to understand
the connection between social-network connectivity and information discovery/security, in par-
ticular elucidating the role of 1) graph coherency structures, 2) connection density, and 3)
observation locations in information discovery and security.

We kindly ask the reader to see the author’s web page, www.eecs.wsu.edu/˜sroy, for a list
of publications and foundational project work related to network estimation.

2
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Predictions using data from social networks and Web 
searches have attracted a lot of attention lately. By 
following what people are blogging about or what they are 
searching about can give us some intuition on the 
collective psyche and lead us to understand what is 
currently happening in society before it has actually 
happened. Sometimes people refer to this phenomenon as 
the �“wisdom of the crowd�”, that is, taking into account the 
opinions of the society as a whole, instead of the opinions 
of the expert. 
 Facebook and Twitter are services where users can share 
personal opinions, and the APIs provided by these 
companies make it relatively easy to extract and process 
them. Google search volume trends, also accessible by 
APIs, can give an indication on what people are currently 
searching for, thus providing some insight into their 
current needs and worries. Theoretically, these data, if used 
correctly, can lead to predictions of currently occurring 
events influenced by human behavior. In fact, Choi & 
Varian (2009) have coined the term �“predicting the 
present�” to describe this phenomenon, while Asur & 
Huberman (2010) simply refer to it as �“predicting the 
future�”.  
 Being able to make predictions based on publicly 
available data would have numerous benefits to areas such 
as health (e.g. predictions of flu epidemics �–Ginsberg et al. 
2009, Lampos et al. 2010), business (e.g., prediction of 
box-office success of movies �–Asur & Huberman 2010, 
Mishne & Glance 2006; and product marketability �–
Shimshoni et al. 2009), economics (e.g., predictions on 
stock market trends and housing market trends �–Bollen et 
al. 2010, Choi & Varian 2009, or Gilbert & Karahalios 
2010), and politics (e.g., trends in public opinion �–
O�’Connor et al. 2010; and predictions of election results �– 
Geek Blog 2010, Tumasjan et al. 2010, or Tweetminster 
2010).  
 One would expect that, following the previous research 
literature (e.g. O�’Connor et al. 2010; Tumasjan et al. 
2010), and given the high utilization that the Web and 
online social networks have in the US (Smith 2011), 
Twitter volume should have been able to predict 
consistently the outcomes of the US Congressional 
elections. But is it so? In this presentation we examine the 
instances and methods that have been used in the past in 
the claims of electoral results predictions and discuss their 
predictive power. We then argue that Social Media cannot 

predict elections and we will give a range of reasons 
inherent in the use of Social Media that undercut the 
predictability of elections. 

Claims that Social Media Data could have 
predicted the elections 
Because of the promising results achieved by many of the 
projects and studies mentioned in the previous section 
there is a relatively high amount of hype surrounding the 
feasibility of predicting electoral results using social 
media. It must be noted that most of that hype is fueled by 
traditional media and blogs, usually bursting prior and after 
electoral events. For example, shortly after the recent 2010 
elections in the US, bold statements made it to the news 
media headlines. From those arguing that Twitter is not a 
reliable predictor (e.g. Goldstein & Rainey 2010) to those 
claiming just the opposite, that Facebook and Twitter were 
remarkably accurate (e.g. Carr 2010). 

We point out that all of such statements were issued 
after the elections were over and the final results were 
disclosed. Moreover, the degree of accuracy of these 
�“predictions�” was usually assessed in terms of percentage 
of correctly guessed electoral races �– e.g., the winners of 
74% for the House and 81% for the Senate races were 
predicted, according to Facebook (2010) �– without further 
qualification. This is of vital importance since many races 
were won by very tight margins. They were also not 
always compared against traditional ways of prediction, 
such as the professional polling results or the simple 
predictions based on �“incumbency�” (the fact that those 
who are already in office are far more likely to be re-
elected in the US). 

Though not as bold as the news reports, scholarly 
research does tend to support a positive opinion on the 
predictive power of social media as a promising line of 
research, while exposing some of the caveats of the 
methods. Thus, according to Williams & Gulati (2008), the 
number of Facebook fans for election candidates had a 
measurable influence on their respective vote shares. These 
researchers assert that �“social network support, on 
Facebook specifically, constitutes an indicator of 
candidate viability of significant importance [...] for both 
the general electorate and even more so for the youngest 
age demographic.�” 
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 A study of a different kind was conducted by O�’Connor 
et al. (2010). They analyzed the way in which simple 
sentiment analysis methods could be applied to tweets as a 
tool of automatically pulsing public opinion. These 
researchers correlated the output of such a tool with the 
temporal evolution of different indices such as the index of 
Consumer Sentiment, the index of Presidential Job 
Approval, and several pre-electoral polls for the US 2008 
Presidential Race. The correlation with the first two indices 
was rather high but it was not significant for the pre-
electoral polls. According to the findings of this paper, 
sentiment analysis on Twitter data seems to be a promising 
field of research to replace traditional polls although, in 
their words, it's not there quite yet. 

Finally, the work by Tumasjan et al. (2010) focused on 
predicting elections from social media. Indeed, one of the 
research questions their study aimed to answer was 
whether Twitter can serve as a prediction of electoral 
results. In that paper, a strong statement is made about 
predictability, namely that �“the mere number of tweets 
mentioning a political party can be considered a plausible 
reflection of the vote share and its predictive power even 
comes close to traditional election polls.�” Moreover, these 
researchers found that co-occurrence of political party 
mentions accurately reflected close political positions 
between political parties and plausible coalitions. 

Unpredictability of Elections using SM 
In a recent study, we examined how the algorithms that 
have claimed to predict elections would have performed in 
several instances in the 2010 US elections. This was 
important to establish because a wider set of test cases was 
needed to base any claims of predictability of elections 
through Social Media.  
 For our study, two data sets related to elections that took 
place in the US during 2010 were collected. Predictions 
were calculated based on Twitter chatter volume, as in 
(Tumasjan et al. 2010), and then based on sentiment 
analysis of tweets, in a way similar to (O�’Connor et al. 
2010). These predictions were compared to the actual 
results of the elections. Out of six senatorial races, each 
method predicted correctly the win/lose outcome of only 
three. The predictions based on Twitter volume had a mean 
average error (MAE) of 17.1%, while the predictions based 
on sentiment analysis had a MAE of 7.6%.  
 To examine whether sentiment-based analysis actually 
performed better, we deepened our analysis in this 
direction. Without getting into details, we report that based 
on three experiments, we found that the accuracy of 
lexicon-based sentiment analysis when applied to political 
conversation is quite poor. When compared against 
manually labeled tweets it seems to just slightly 

outperform a random classifier; it fails to detect and 
correctly assign the intent behind disinformation and 
misleading propaganda; and, finally, it�’s a far cry from 
being able to predict political preference. 
 Predicting elections with accuracy should not be a 
matter of luck or post-processing adjustment. It should not 
be supported without having some clear understanding 
why it works.  Instead, it should be a matter of correctly 
identifying likely voters and getting an un-biased 
representative sample of them. That�’s what professional 
pollsters have been doing for the last 80 years, with mostly 
impressive results. But that's something that today's Social 
Media cannot do. Let us examine why. 
 To make our point clear, two pieces of evidence will be 
provided in our presentation. First, we will describe the 
complexity of professional polling and explain the reasons 
why their methods cannot be duplicated by sampling 
Social Media data. Next, we will discuss the manipulation 
of Social Media by spammers and propagandists, since 
they can shape the data so that they do not reflect the true 
intentions of the users, even if they happened to be 
representative of the whole population. 
 Our research has revealed that data from social media 
did only slightly better than chance in predicting election 
results in the last US congressional elections. We argue 
that this makes complete sense: So far, only a very rough 
estimation on the exact demographics of the people 
discussing elections in social media is known, while 
according to the state-of-the-art polling techniques, correct 
predictions requires the ability of sampling likely voters 
randomly and without bias. Moreover, answers to several 
pertinent questions are needed such as the actual nature of 
political conversation in social media, the relation between 
political conversation and electoral outcomes, and the way 
in which different ideological groups and activists engage 
and influence online social networks. 

In addition to that, further research is needed regarding 
the flaws of simple sentiment analysis methods when 
applied to political conversation. In this sense it would be 
very interesting to understand the impact of different 
lexicons and, even more important, to go one step farther 
by using machine learning (such as in the work by Asur & 
Huberman 2010); or looking for a deeper understanding of 
the dynamics of political conversation in social media 
following the work of Somasundaran & Wiebe (2010). 
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With the onset of Internet and phone-based technology, people leave numerous traces of their social 
behavior in – often publicly available – data sets. In this paper we look at a virtual community of independent 
(‘Indie’) software developers for the Macintosh and iPhone that use the social networking site Twitter as one 
of their platforms of choice. Using Twitter's publicly available API, we collect longitudinal data on both 
network connections and the use of Twitter client software over a period of five weeks. We use this data of 
the virtual community of ‘Indie’ developers to analyze the adoption of Twitter client software. (See Fig 1 and 
Fig 2.) Within this community, four prominent software developers have developed Twitter clients that 
compete for adoption by users in the same community. Apart from these 'Indie' Twitter clients, members of 
the virtual community can choose from a range of clients that are developed outside of the Indie community. 
Generally, social networks and social capital are considered to be important variables in explaining the 
adoption and diffusion of behavior. However, it is contested whether the actual social connections, cultural 
discourse, or individual preferences determine this adoption and diffusion. Using discrete choice analysis 
applied to longitudinal data, we are able to distinguish between social network influence on one hand and 
cultural discourse and individual preferences on the other hand. Our analysis shows that, within the virtual 
community, social connections are generally of greater importance for the adoption and diffusion of Indie 
clients than they are for the adoption of clients that are developed outside of the Indie community. In 
addition, we present a method using readily available software to estimate the size of the error due to 
unobserved correlated effects. This is critically important to test for in any application of multinomial logistic 
regression where social influence variables and/or other network measures are used as explanatory 
variables, since their use poses a classic case of endogeneity. We show that even in a seemingly saturated 
model, the log likelihood can increase dramatically by accounting for unobserved correlated effects. 
Furthermore the estimated coefficients in the uncorrected model can be significantly biased beyond standard 
error margins. (See Table 1.) Failing to correct for unobserved correlated effects can yield potentially highly 
misleading policy interpretations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Twitter Client Market Share in 
Indie Community, 630633 Tweets 

Fig 2. Norm. Tweets per Day per Twitter Client in Indie Community 
Obs. period: Sunday 9 August to Wednesday 16 September 2009 
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TABLE 1. Estimated Parameters for MNL Model versus Mixed MNLP Model with Correlated Effects  
 

Nr. Twitter client Value Std err t-test p-val Value Std err t-test p-val
Robust 
Std err

Robust t-
test

Robust 
p-value

Absolute 
Bias

Bias > SE 
MNL

Alternative specific constants: "cultural discourse" on Twitter client
1 Web 0,14 0,07 2,01 0,04 2,55 0,12 21,24 0 0,35 7,22 0 2,41 Yes
2 Tweetie -2,06 0,07 -28,98 0 -5,69 0,23 -24,31 0 1,98 -2,87 0 3,63 Yes
3 Twitterrific -3,22 0,10 -31,66 0 -5,67 0,18 -32,22 0 0,74 -7,67 0 2,45 Yes
4 Tweetdeck -1,10 0,10 -10,62 0 0,07 0,19 0,37 0,71 * 0,78 0,09 0,93 * 1,17 Yes
5 Twitterfon -2,65 0,16 -16,86 0 -1,85 0,22 -8,29 0 0,92 -2,02 0,04 0,80 Yes
6 Twittelator -5,43 0,22 -25,10 0 -6,01 0,26 -23,25 0 0,89 -6,74 0 0,58 Yes
7 Birdfeed -8,51 0,23 -36,35 0 -11,4 0,31 -36,30 0 1,10 -10,35 0 2,89 Yes

Individual preferences (7-day cumulative lag): "stickiness" of Twitter client
8 Web 3,40 0,013 256,8 0 1,36 0,022 61,65 0 0,070 19,38 0 2,04 Yes
9 Tweetie 3,59 0,010 358,0 0 1,35 0,017 79,71 0 0,053 25,39 0 2,24 Yes

10 Twitterrific 4,75 0,018 259,7 0 2,30 0,028 81,59 0 0,077 29,73 0 2,45 Yes
11 Tweetdeck 5,26 0,020 260,6 0 2,67 0,036 73,43 0 0,150 17,82 0 2,59 Yes
12 Twitterfon 6,04 0,030 200,7 0 4,55 0,055 82,29 0 0,280 16,24 0 1,49 Yes
13 Twittelator 7,05 0,042 166,9 0 6,06 0,064 94,37 0 0,293 20,67 0 0,99 Yes
14 Birdfeed 6,37 0,047 135,2 0 4,40 0,068 64,70 0 0,258 17,02 0 1,97 Yes

Network influence of choice behavior of user's Friends in community (7-day cumulative lag): "viralness" of Twitter client
15 Web 0,134 0,022 6,23 0 0,130 0,034 3,84 0 0,091 1,42 0,16 * 0,004 No
16 Tweetie -0,296 0,015 -19,91 0 -0,133 0,022 -6,05 0 0,059 -2,27 0,02 0,163 Yes
17 Twitterrific 0,608 0,029 20,74 0 0,816 0,043 19,16 0 0,123 6,66 0 0,208 Yes
18 Tweetdeck 0,429 0,039 11,12 0 0,817 0,058 14,09 0 0,197 4,15 0 0,388 Yes
19 Twitterfon 0,411 0,097 4,23 0 1,120 0,149 7,49 0 0,948 1,18 0,24 * 0,709 Yes
20 Twittelator 1,240 0,138 8,97 0 1,240 0,185 6,69 0 0,607 2,04 0,04 0,000 No
21 Birdfeed 2,310 0,113 20,46 0 2,850 0,142 20,09 0 0,376 7,58 0 0,540 Yes

User "follows" Opinion-maker John Gruber: contextual effect on Twitter client choice
22 Web 0,074 0,011 6,54 0 -0,114 0,022 -5,24 0 0,084 -1,36 0,18 * 0,188 Yes
23 Tweetie 0,177 0,009 19,70 0 0,333 0,031 10,88 0 0,259 1,29 0,2 * 0,156 Yes
24 Twitterrific 0,234 0,015 15,41 0 0,757 0,032 23,47 0 0,164 4,63 0 0,523 Yes
25 Tweetdeck -0,068 0,018 -3,82 0 -0,445 0,034 -13,07 0 0,177 -2,51 0,01 0,377 Yes
26 Twitterfon -0,056 0,025 -2,24 0,03 -0,134 0,036 -3,75 0 0,155 -0,86 0,39 * 0,078 Yes
27 Twittelator -0,071 0,038 -1,87 0,06 * -0,268 0,047 -5,70 0 0,138 -1,94 0,05 * 0,197 Yes
28 Birdfeed 0,386 0,034 11,31 0 0,360 0,046 7,79 0 0,173 2,08 0,04 0,026 No

User "follows" Twitter client developer: contextual effect on Twitter client choice
29 Tweetie 0,237 0,010 23,71 0 0,795 0,036 21,96 0 0,304 2,61 0,01 0,558 Yes
30 Twitterrific 0,142 0,020 7,12 0 0,743 0,043 17,45 0 0,174 4,26 0 0,601 Yes
31 Tweetdeck 0,300 0,054 5,59 0 1,390 0,104 13,36 0 0,465 2,99 0 1,090 Yes
32 Twitterfon 0,532 0,116 4,59 0 1,620 0,256 6,34 0 2,200 0,74 0,46 * 1,088 Yes
33 Twittelator 0,479 0,213 2,25 0,02 1,640 0,230 7,15 0 0,405 4,05 0 1,161 Yes
34 Birdfeed 0,296 0,045 6,64 0 0,721 0,060 11,99 0 0,203 3,56 0 0,425 Yes

Frequency of tweets sent by user during observation period: "power" user effect on Twitter client choice
35 Web -0,1210 0,0017 -69,81 0 -0,1370 0,0032 -42,35 0 0,0114 -12,07 0 0,0160 Yes
36 Tweetie -0,1050 0,0014 -72,84 0 -0,0806 0,0040 -20,09 0 0,0285 -2,83 0 0,0244 Yes
37 Twitterrific -0,0990 0,0025 -39,26 0 -0,0504 0,0044 -11,45 0 0,0182 -2,77 0,01 0,0486 Yes
38 Tweetdeck -0,1010 0,0028 -35,99 0 -0,0714 0,0049 -14,63 0 0,0174 -4,10 0 0,0296 Yes
39 Twitterfon -0,0570 0,0040 -14,14 0 -0,0489 0,0052 -9,40 0 0,0146 -3,36 0 0,0081 Yes
40 Twittelator -0,0624 0,0056 -11,21 0 -0,0792 0,0067 -11,77 0 0,0181 -4,38 0 0,0168 Yes
41 Birdfeed -0,0357 0,0057 -6,23 0 -0,0087 0,0075 -1,16 0,25 * 0,0234 -0,37 0,71 * 0,0270 Yes

User eigenvector centrality in community: centrality effect on Twitter client choice
42 Web 1,21 0,12 9,89 0 2,77 0,20 14,18 0 0,55 5,02 0 1,56 Yes
43 Tweetie -0,91 0,10 -8,81 0 -2,70 0,27 -9,90 0 2,02 -1,34 0,18 * 1,79 Yes
44 Twitterrific -0,86 0,16 -5,34 0 -4,66 0,26 -18,29 0 1,06 -4,39 0 3,80 Yes
45 Tweetdeck 1,79 0,21 8,58 0 4,17 0,33 12,65 0 1,26 3,30 0 2,38 Yes
46 Twitterfon -1,24 0,31 -3,96 0 -2,57 0,42 -6,14 0 1,50 -1,71 0,09 * 1,33 Yes
47 Twittelator -0,30 0,43 -0,71 0,48 * 0,73 0,54 1,35 0,18 * 1,72 0,42 0,67 * 1,03 Yes
48 Birdfeed -2,31 0,29 -7,96 0 -3,68 0,36 -10,24 0 1,12 -3,27 0 1,37 Yes

User "closeness" in community: centrality effect on Twitter client choice
49 Web -3,04 0,19 -15,71 0 -8,74 0,34 -25,71 0 1,00 -8,73 0 5,70 Yes
50 Tweetie 3,58 0,21 16,99 0 13,20 0,70 18,85 0 6,00 2,20 0,03 9,62 Yes
51 Twitterrific 2,27 0,29 7,95 0 5,70 0,47 12,04 0 1,92 2,97 0 3,43 Yes
52 Tweetdeck -2,20 0,29 -7,48 0 -6,52 0,56 -11,75 0 2,25 -2,90 0 4,32 Yes
53 Twitterfon -1,05 0,46 -2,31 0,02 -4,58 0,65 -6,99 0 2,70 -1,69 0,09 * 3,53 Yes
54 Twittelator 4,79 0,61 7,89 0 4,91 0,73 6,77 0 2,54 1,93 0,05 * 0,12 No
55 Birdfeed 9,89 0,62 15,98 0 12,50 0,81 15,33 0 2,85 4,38 0 2,61 Yes

Ratio of user's Friends in community to user's total Friends in Twitter universe: extended "in-degree" (w.r.t. Tweet flow) effect on Twitter client choice
56 Web 0,365 0,052 6,98 0 0,391 0,100 3,91 0 0,349 1,12 0,26 * 0,026 No
57 Tweetie 0,766 0,043 17,94 0 1,220 0,124 9,82 0 0,930 1,31 0,19 * 0,454 Yes
58 Twitterrific 1,360 0,068 19,97 0 2,620 0,117 22,43 0 0,383 6,86 0 1,260 Yes
59 Tweetdeck -1,310 0,094 -14,00 0 -4,050 0,188 -21,51 0 0,875 -4,63 0 2,740 Yes
60 Twitterfon -0,027 0,121 -0,22 0,83 * 0,104 0,183 0,57 0,57 * 0,658 0,16 0,87 * 0,131 Yes
61 Twittelator -0,728 0,187 -3,90 0 -0,515 0,233 -2,21 0,03 0,648 -0,80 0,43 * 0,213 Yes
62 Birdfeed 1,630 0,148 10,98 0 3,520 0,200 17,58 0 0,667 5,27 0 1,890 Yes

Ratio of user's Followers in community to user's total Followers in Twitter universe: extended "out-degree" effect on Twitter client choice
63 Web 0,047 0,053 0,88 0,38 * 0,055 0,100 0,55 0,58 * 0,358 0,15 0,88 * 0,009 No
64 Tweetie 0,587 0,043 13,60 0 0,960 0,109 8,83 0 0,572 1,68 0,09 * 0,373 Yes
65 Twitterrific 0,164 0,068 2,43 0,02 0,304 0,122 2,50 0,01 0,402 0,76 0,45 * 0,140 Yes
66 Tweetdeck 0,152 0,093 1,64 0,1 * 0,454 0,183 2,48 0,01 0,812 0,56 0,58 * 0,302 Yes
67 Twitterfon 0,773 0,121 6,38 0 1,220 0,170 7,20 0 0,580 2,11 0,03 0,447 Yes
68 Twittelator 0,235 0,182 1,29 0,2 * -0,558 0,236 -2,37 0,02 0,708 -0,79 0,43 * 0,793 Yes
69 Birdfeed 0,629 0,149 4,22 0 0,229 0,200 1,14 0,25 * 0,669 0,34 0,73 * 0,400 Yes

Estimated user-specific error: unobserved correlated effects on Twitter client choice
70 Web 1,77 0,0129 136,66 0 0,0451 39,22 0
71 Tweetie 2,29 0,015 153,36 0 0,0728 31,54 0
72 Twitterrific 2,39 0,0198 120,34 0 0,0686 34,82 0
73 Tweetdeck 2,36 0,0241 97,71 0 0,0961 24,50 0
74 Twitterfon 1,61 0,0325 49,62 0 0,184 8,77 0
75 Twittelator 1,32 0,0478 27,70 0 0,244 5,42 0
76 Birdfeed 1,74 0,0349 49,77 0 0,13 13,42 0

Multinomial Logit Mixed Multinomial Logit for Panel data
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Abstract 
Information or influence spreading in online social networks is a network growth process.  The popular 

“preferential attachment” network growth model possesses power law degree distributions observed in 

infrastructure networks like the World Wide Web and the power-grid [1].  In contrast, we find that 

information-propagation networks such as the micro-blogging site Twitter exhibit non-local phenomena in 

addition to power law degree distributions.  Specifically, there is always a “superstar” node with extremely 

high degree that is not predicted by preferential attachment.  Here we show that local network growth 

models such as preferential attachment are not sufficient to describe information propagation phenomena 

that occur in real online social networks such as Twitter.  We propose a new class of network growth model 

which incorporates the global structure of the network.  One special instance of this model is equivalent to 

preferential attachment, while another special instance of this model accurately describes the power law 

and superstar phenomena seen in Twitter networks. 

 
Empirical Observations: In Twitter users post messages known as tweets which can be forwarded in what are 

known as retweets.  We collected retweets from Twitter about several different live events, such as sporting 

events and musical performances [2].  For example, we collected any retweet with the phrase “World Cup” during 

the 2011 World Cup opening ceremony.  Because each retweet represents an edge between the tweet source and 

the retweeter, we can connect these retweet edges to form a network for each event.  Each of these retweet 

networks contained many small connected components, and one large connected component.  Throughout this 

work, we focus on these largest connected components, which are shown in Fig. 1a.   

The empirical degree distributions for the retweet networks are shown in Fig. 1b.  It can be seen that the 

distributions follow a power law, but there is another interesting phenomenon occurring.  Each retweet network 

has one very high degree node, which we call a superstar.  This superstar node has degree that scales like (N), 

where N is the network size.  In contrast, the popular preferential attachment model has maximum degree that 

scales like  (N
1/2

).  Therefore, this superstar phenomenon requires a new network growth model. 

 

Data Model: We propose the following model for these retweet networks.  We start with a single node, and then 

at each time step a new node arrives and connects with an existing node with probability proportional to the 

node’s importance function.  The key question then becomes what importance function to use.  If one uses the 

node’s degree, then this model reduces to preferential attachment.  However, we require an importance function 

that can incorporate the global network structure.  We find that if one uses the network centrality measure known 

as rumor centrality [3], then we get excellent agreement with the Twitter data, as shown in Fig. 1b.  For each of 

the different retweet networks, rumor centrality not only reproduces the superstar degree very closely, but also the 

exponent of the power law.  Therefore, it seems that rumor centrality possesses the correct global structural 

information to describe the growth of these networks.  Rumor centrality was designed as an estimator for finding 

rumor sources in networks [3].  Specifically, a node’s rumor centrality is related to the likelihood of it being the 

rumor source. 

 

Model Analysis:  We now explain why rumor centrality leads to a power law and superstar.  To do so, we claim 

the following “fixed point” structure for a rumor centrality network with N nodes when N is large.  There is one 

superstar node with degree N/2+o(N), i.e. roughly half of the nodes neighbor the superstar.  Also, there is a 

positive integer c such that no more than c neighbors of the superstar are roots of subtrees with  (N
1/2

) nodes.  

The remaining nodes of the network are roots of subtrees with o(N
1/2

) nodes.  Finally, there are only o(N
1/2

) nodes 

more than two hops from the superstar.   
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To understand the behavior of the superstar node, consider a simple star network with a central superstar 

node as the hub with N neighbors.  Using results from [3] it can be shown that the rumor centrality of the 

superstar is N! and the rumor centrality of every other node is (N-1)!.  Using these values, the attachment 

probability of the superstar is 1/2.  We prove that in the fixed point network, the superstar’s attachment 

probability is slightly perturbed from 1/2 to 1/2-).  Thus, each new node has roughly a 1/2 chance of joining 

the superstar, and so the degree of the superstar should be close to N/2, where N is the network size.   

The power-law degree distribution can be understood if we look at the ratio of rumor centralities of non-

superstar nodes.  It was shown in [3] that the ratio of rumor centralities of any two nodes u and v which neighbor 

the superstar v* is given by 
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where the variable T
v*

v is the size of the subtree rooted at node v and pointing away from node v* and dv  is the 

degree of node v.  For large N, because each subtree has size at most  (N
1/2

), we will have N>>Tv
v*

 for any node 

v ¹ v* in the network, so this ratio is dominated by the Tv
v*

 / Tu
v*

 term.  Also note that because there are only 

o(N
1/2

) nodes more than 2 hops from the superstar in the entire network, the subtree size of these nodes is very 

close to their degree.  Therefore, the ratio of the attachment probabilities is approximately equal to the ratio of the 

degrees, just as in preferential attachment.  This explains the near equivalence of the power law exponent with 

that of preferential attachment. 

 

Conclusion:  We have shown that with rumor centrality we obtain a network growth model that accurately 

describes retweet networks in Twitter.  It may be that the reason why rumor centrality works for these networks is 

that it correctly quantifies the importance of a node in a retweet network in terms of how likely it was to have 

been the source or followed.  When viewed this way, rumor centrality could be used for other applications such as 

predicting the spread of information or ranking influential people in these networks.   

 

            
(a)                                                                               (b) 

Fig. 1. (a) The largest connected component for different retweet networks in Twitter (N is the network size).  (b) The degree 

distribution for the largest connected component of the retweet networks and corresponding equal size simulated networks 

using rumor centrality as an importance function.  The curves correspond to the retweet network (black circles) and rumor 

centrality network (blue squares).  The x-axis is the node degree normalized by the network size N.  The event key phrases 

for the networks are (A) Federer, (B) England, (C) BET Awards, and (D) World Cup.   
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Social media, such as blogs, are often seen as democratic entities that allow more voices to be heard
than the conventional mainstream media as well as a balancing force against the arguably slanted elite
media. A systematic comparison between social and mainstream media is necessary but challenging due
to the scale and dynamic nature of modern communication. We propose empirical measures to quantify
the extent and dynamics of social (blog) and mainstream (news) media bias. We focus on a particular
form of bias—coverage quantity—as applied to stories about the 111th US Congress. We compare
observed coverage of Members of Congress against a null model of unbiased coverage, testing for biases
with respect to political party, popular front runners, regions of the country, and more. Our measures
suggest distinct characteristics in news and blog media. A simple generative model, in agreement with
data, reveals differences in the process of coverage selection between the two media.

The extent of media bias determines the information available to the public and can affect public opinion
and decision-making. Social media, powered by the growth of the Internet and related technologies, is
envisioned as a form of grassroots journalism that blurs the line between producers and consumers and
changes how information and opinions are distributed. Indeed, social media can be used by underprivileged
citizens, promising a profound impact and a healthy democracy.

Do social media exhibit more or less bias than mass media and, if so, to what extent? Identifying media
bias is challenging for a number of reasons. First, bias is “in the eyes of the beholder” and hence not
easy to observe, e.g., conservatives tend to believe that there is a liberal bias in the media while liberals
tend to believe there is a conservative bias [1]. Second, the assessment of bias usually implies knowing
what “fairness” would be, which may not be available or consistent across different viewpoints. Third,
Internet-based communication promises easy, inexpensive, and instant information distribution, which not
only increases the number of online media outlets, but also the amount and frequency of information and
opinions delivered through these outlets. The scale and dynamic nature of today’s communication should
be accounted for.

Our major contribution is that we propose empirical measures to quantify the extent and dynamics
of “bias” in mainstream and social media (hereafter referred to as News and Blogs, respectively). Our
measurements are not normative judgment, but examine bias by looking at the attributes of those being
mentioned, against a null model of “unbiased” coverage. We focus on the number of times a member of the
111th US congress was referenced, and study the distribution and dynamics of the references within a large
set of media outlets. We demonstrate bias measures for slants in favor of specific political parties, popular
front-runners, or certain geographical regions.

1
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Figure 1: [Left] Slant score as a function of time. Overall, the media, especially Blogs, become more R-slanted after
the 2010 election. [Top-right] Media outlets are slightly shifting towards the other side after election. The majority
of news outlets become slightly more R-slanted. For blogs, originally D-slanted blogs become more R-slanted. Each
point represents a media outlet. [Bottom-right] The generative model for the distribution of references n per legislator.
The larger value of q for Blogs indicates that they are more driven by the rich-get-richer mechanism than News (both
distributions are heavy-tailed). Dashed lines indicated fitted poisson and log-normal distributions, for comparison.

Consider a news or blog outlet’s biased coverage of two political parties. We quantify bias of an outlet i
by a slant score θik which is defined as θik = log(odds-ratio) = log

(
nik/(ni−nik)
pk/(1−pk)

)
, where nik be number of times

an outlet i references legislators in group k, ni is the total references of i, and pk is the baseline probability
that i refers to k. The advantage of having such a baseline probability is that “fairness” become configurable,
e.g., one can consider fairness as a 50-50 chance to reference either party (i.e. pD = pR = 0.5), or define
pD = 0.6 since roughly 60% of the Congress are Democrats. In this two-party case, we take θi ≡ θik, with
k = D, and θi > 0 means outlet i is more likely to be D-slanted and 0 simply means no bias w.r.t that baseline.
To characterize the overall bias within a media, we derive a media-wide collective slant score, Θ, which is
defined as Θ ≡ θ∗, where θ∗ is the asymptotically unbiased estimator for θ based on a random effect model.
The dynamics of media bias can be measured as a function of time (Fig. 1 [left]).

We extend such dichotomous-outcome measures to multi-outcome bias measures such as front-runner
slant. Using these measures to examine newly collected data, we have observed distinct characteristics
of how News and Blogs cover the US congress. Our analysis of party and ideological bias indicates that
Blogs are not significantly less slanted than News. However, their slant orientations are more sensitive
to exogenous factors such as national elections (Fig. 1 [top-right]). In addition, blogs’ interests are less
concentrated on particular front-runners or regions than news outlets.

To better understand the distinctive slant structures between the two media, we propose to use a simple
“wealth allotment” model to explain how legislators gain attention (references) from different media. The
results about blog media’s inclination to a rich-get-richer mechanism indicates they are more likely to echo
what others have mentioned (Fig. 1 [bottom-right]). This observation does not contradict our measures of
bias – compared with news media, blogs are weaker adherents to particular parties, front-runners or regions
but are more susceptible to the network and exogenous factors.

[1] T. Groseclose and J. Milyo. A measure of media bias. The Quarterly J. of Economics, 120(4):1191–1237, 2005.
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ABSTRACT
We address the question of how online social networks affect
real world just-in-time decisions. The question is significant
due to the pervasiveness of mobile devices in our just-in-
time decisions and the way we are connected to our social
networks at various scales, across time and space, through
these mobile communication channels. An empirical inquiry
on mobile social influence and how these social networks
impact our decisions will provide a framework for utilizing
these virtual social influences to build persuasive mobile in-
terfaces and provide timely decision aids that can help with
our personal and social goals in the real world. We approach
this problem through a real world experiment where we de-
ploy mobile digital menus (Social Menu) in a restaurant and
capture people’s dish choices in real time. Results show that
the modality in which social information is presented affects
people’s decisions in the dimensions of taste, time and price.

METHOD AND RESULTS
With wide scale adoption of smart phones world wide, the
mobile devices are increasingly becoming influential as they
are utilized for location sensitive and time limited decisions
such as shopping, eating, meeting people, and traveling. Dur-
ing the past holiday season over 60% of mobile phone users
used their phones to pre-shop before they went to the stores.
In the physical world, unlike online transactions, people face
cognitively limited situations where decisions have to be made
on-the-go within limited time and space. We try to plan our
schedule but many times we are faced with many options
and have to make choices on the spot. In the case of gro-
cery shopping, up to 70% of purchases are decided in the
store[12]. The difference between an online and offline pur-
chase scenario is that there is a cost to not making a deci-
sion in the offline world. If one needs to purchase at a store
later, one needs to travel back to the store to make the pur-
chase while online purchases can be done at anytime and
anywhere.

In our Social Menu study, we investigate the impacts of so-
cial proof and mental shortcuts due to mobile social informa-
tion by instrumenting real people in the real world. Mobile
devices not only allow people to connect with other people at
varying scales at anytime, from anywhere, but also allow us
to capture and share people’s economic activity in real time.
Systems like SmartRestaurant made lunch menus of a lo-
cal campus restaurant accessible over the phone and allowed
people to pre-order their lunch for pick up and make pay-
ments through the phone[9]. The resulting transactions are

a valid proxy to the economic decisions and by instrument-
ing the choice architecture we can understand the impacts
of augmented social information. Our goal is to understand
the impacts of virtually mediated social influences on peo-
ple’s decisions and how it relates to time, taste, price and the
social environment.

We approached this problem by creating a digital menu mo-
bile application we call Social Menu, that was used directly
in people’s economic decisions. 250 people participated in
the study by dining at the restaurant. Prior research in this
area has focused on clever experiments with individuals and
trained confederates that influence the research subjects in
lab and real world settings. Other experiments involved imag-
ined situations and surveys. Our approach allows us to ob-
serve people in different social networks in the real world in
a microscopic manner with large groups of people. There-
fore it allows us to capture multi-source, multi-target social
influences over time and at scale, which requires further real
world studies[10]. We measured behavioral traces by captur-
ing the categories and dishes they browsed, and the time to
making their choices. The work was evaluated by analyzing
the data from different experimental groups.

The results show:

1. Diversion of choices: about 50.2% of people made on the
spot decisions that did not include any of their favorite
dishes from the online pre-survey menu. This implies that
people’s choices can be changed by the current context
and is in agreement with studies on shopping where peo-
ple make 70% of purchase decisions in the store. There-
fore, mobile guided just-in-time decision systems could
have significant influence on people’s choices.

2. Second degree friends have experienced as many common
dishes as the first degree friends indicating that friends of
two degrees of separation can provide people with rein-
forcement in their choices.

3. Scale of influence: empirical data indicates that across
time accessibility and scale of virtual social information
may affect 2 to 10 times more people in their considera-
tions compared to physical social influence by co-present
party on the table.

4. Time of engagement: friend’s names (individuals) on the
menu made people spend longer time to decide indicat-
ing that seeing other people’s choices encourages one to
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spend more time to evaluate choices before making a de-

cision.

5. Price factor: average price comparison between differ-

ent experimental groups show that anonymous group of

friends had strongest influence in pulling people to choos-

ing cheaper items.

6. Summary: Individual friends increase engagement, group

of friends affect price choice and popularity serves as short-

cuts to decision making.

BACKGROUND

Recent research with mobile phones have allowed us to cap-

ture in detail and understand our communication patterns,

mobility patterns and to deduce how people behave in ag-

gregate in the real world. Researcher have been using mo-

bile probes[6] to capture and understand people’s shopping

behavior. Bluetooth scanning and location based informa-

tion from mobile phones have been used to capture people’s

social relationships in the real world, their patterns of activ-

ity and their habits[3]. AT&T study showed that people in

New York City travel larger distances compared to people

in LA[7]. In contrast, Barabasi’s work showed how people

in a city in Europe regularly do not leave the 3 mile radius

during their daily life. The communication patterns based

on frequency of incoming and outgoing calls also allow the

tie strengths of customers to be identified[11]. Instead of fo-

cusing on mobility patterns and tie strengths, we capture the

choices people make through the mobile phones and inject

social information to understand how just-in-time choices

are affected when certain social signals are published from

the social network.

When people are seated together at a table and are choos-

ing their dishes, the sequential order creates social influence

that makes people to choose differently from preceding dish

choices by others. Ordering patterns in a Chinese restaurant

were investigated to understand group ordering behavior and

the results show that on average people’s dish choices di-

verge from other’s choices seated on the same table[1]. More

importantly, peer impacts and normative influences that are

most situationally similar can affect the outcome of people’s

decisions[5].

Decades of research has been done in how people make de-

cisions in varying social contexts, however with the wide

adoption of smartphones, social interactions we now engage

in has become a mix of virtual and physical interactions.

Lab experiments and field studies of social scientists have

shown how social influence causes people to make irrational

decisions and how such forces can be identified, managed

and utilized for the benefit of achieving certain goals of per-

suasion[2]. As people in the US are spending over 20 bil-

lion hours a year on Facebook both online and mobile, it

is unprecedented how such networks might impact people’s

choices in the real world. We attempt to further the under-

standing of interaction of virtual social networks in the phys-

ical world by investigating the impacts of social information

in particular decision making scenario that is constrained by

space and time. People also are prone to deal with uncer-

tainty by following other people’s choices. In the context

of the restaurant, research have been done on tipping, menu

choices and how price plays a role on people’s choices. We

are extending these bodies of research by investigating the

effects of mobile mediated influences as mobile phones pre-

vail in our lives.

Most recently, influence of social networks on social net-

working sites and cultural markets have revealed the effects

of status in purchase behavior and resulting unpredictabil-

ity and inequality. We extend these studies by engaging and

measuring different types of social influence (peers, peers

anonymous and popularity) in a real world setting with real

decisions.

Analysis of 208 users in the most popular social networking

site Cyworld in Korea, shows that there are three different

groups of users with very different purchase behaviors[8].

The low status group of about 48% are not affected by so-

cial influence because they are not well connected and show

limited interaction with others in the social network. The

middle status group of about 40% are moderately connected

and are influenced to generate 5% higher revenue. Finally

the 12% of high status group are very active on the site and

are negatively impacted by their friend’s purchases.

Salganik et al.[13] investigated the role of social influence

in the inequality and unpredictability of success in an arti-

ficial cultural market. They were able to create an artificial

music download site to experiment music selection by real

people. They separated the world into 9 different worlds

with 1 world being the independent condition. The other

8 worlds were socially influenced worlds (showing down-

load popularity) that were independent from each other. The

socially influenced worlds were shown the number of down-

loads next to the songs. The socially influenced worlds showed

consistently higher inequality, popular songs are more pop-

ular and unpopular songs are less popular and higher unpre-
dictability of success of good quality content. Inequality is

measured by the average difference in market share between

all pair of songs and unpredictability is measured by the Gini

coefficient.

Fogg[4] iterates how mobile phones can be used to for op-

portune intervention to improve individual and social behav-

iors. People are wedded to these devices where many people

spend more time with their mobile devices than any other

human being. The nature of mobile phones being always

available and responsive allows it to be a continual channel

of influence. Experiments performed with mobile applica-

tions in encouraging better eating habits, recycling behav-

iors and healthy activity have shown positive outcomes in

encouraging behavioral changes. They also document that

connecting with people who are enacting on similar behav-

ioral changes strengthens the effectiveness of the application

due to power of social comparison. We investigate these so-

cial influences more in detail in the context of just-in-time

setting to see how different modalities of social information

affects people’s choices.
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Localizing Externalities in Social Networks: Inducing Peer
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Abstract

Can we use the value in social relationships to promote cooperative behavior and responsible con-
sumption? We consider the example of energy consumption. It is an activity that produces negative
externalities that affects the whole society. This is a well-known free rider problem, where free riders
carry less than their fair cost of consumption. The equilibrium outcome is always sub-optimal. There
are two traditional institutional solutions to reducing such externalities: quotas, which impose caps on
consumption, and (Pigouvian) taxation [1], which impose a cost to such consumption. In this paper,
we propose a new approach, which exploits the value of social relationships, and the ability of peers to
exert pressure on one another. We create a suitable reward structure in which peers of an individual
get rewarded for the individual’s reduced consumption. This creates localized externalities in the social
network and induces peer pressure on the individuals to reduce consumption. By localizing the exter-
nalities produced by an individual on his/her social peers, we can use the value in social relationships to
promote cooperative behavior and responsible consumption. We show that in most cases, our approach
requires a smaller budget to implement than Pigouvian subsidies.

1 Extended Abstract
We propose a novel approach of localized externalities, which exploits the value of social relationships,
and the ability of peers to exert pressure on one another. Localizing the externalities involves amplifying
them, by punishing/rewarding peers disproportionately based on the individual’s behavior. Thus the global
externalities are exposed to the immediate peers (peers) of an individual in the social network through the
local externalities. The externality produced by an individual on the whole society also has a magnified
effect on his peers by punishing/rewarding them (see Figure 1) and hence the peers exert high pressure on
the individual on behalf of the whole society. By localizing the externalities produced by the individual to
his/her social peers, we can use such social relationships as means for enforcing more efficient outcomes.

The effect of peer pressure in social networks has been studied by Calvo-Armengol and Jackson [2]. In
their model, individuals impose externalities over their peers through their actions, and these peers can
impose social pressure to influence those actions. In contrast, we are interested in scenarios where an
individual’s action imposes externalities on the entire society, but only peers are able to impose pressure as
discussed in the dorm example. Hence, we study a model in which, peers are induced to exercise their ability
to impose pressure on behalf of the whole society.

We now discuss the key results. We consider a network of individuals connected via social ties. Each
individual in this network produces, through his/her consumption, a (negative or positive) externality that
affects the rest of society. Individuals choose the amount of consumption and the pressure to exert on each
of their peers. We analyze the two stage game. In the first stage, individuals decide the amount of peer
pressure to exert on their peers. In the second game, each individual observes the peer pressure on herself and
decides the amount of consumption. An individual derives utility from her own consumption and receives
a reward depending upon the consumption of her peers. An individual also experiences a cost proportional
to her consumption due to peer pressure from her peers in the social network. Individuals also experience
cost of exerting pressure on their peers and the cost is proportional to the amount of pressure they exert.
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A B

A B

Figure 1: Scenario with localized externality: The peers of individuals A and B receive amplified (and more
salient) punishment/reward for the negative/positive externalities produced by these individuals.

We study a subgame perfect equilibrium of the game where an individual experiences equal pressure from
all her peers. We show that:

1. In the second stage of the game, there exists a peer pressure profile such that the equilibrium consump-
tion is equal to optimal social consumption. In this peer pressure profile, each individual experiences a
net marginal peer pressure equivalent to the net marginal externality she imposes on the whole society.
Let us call this the optimal peer pressure profile.

2. We characterize the reward structure such that in equilibrium the peer pressures profile chosen in the
first stage of the game is the optimal peer pressure profile. At the optimal consumption profile, the
marginal reward to the peers of an individual balances the marginal global externality on the peers
and the marginal reduction in cost of exerting pressure to reduce the individual’s consumption for the
peers. When the individual’s consumption is lower than the optimal consumption, the marginal reward
is higher causing the peers to reduce pressure and when the individual’s consumption is higher, the
marginal reward is lower, causing the peers to increase pressure.

3. We also study the constraints on the marginal cost of exerting peer pressure such that the optimal peer
pressure can be induced with the limited budget for the reward. We show that when the marginal cost
of exerting pressure is below a threshold, then the optimal consumption profile can be achieved using
a budget lower than the budget otherwise used to subsidize low consumption. In fact, if the network is
to large as compared to the degree of any node, then this threshold is very high and hence the reward
structure is better than Pigouvan subsidies.

4. When the individuals are rewarded both for their peers’ consumption as well as the pressure their
peers’ exert, then with a suitable reward function, all peers of an individual exert equal pressure on
the individual and there can be no coalitions that are incentive compatible. The budget for rewards in
this case is still lower than the budget for Pigouvian subsidies.
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Social networks have always been central to human interaction and behavior; recent years have seen a
surge in interest in their study – primarily due to the large-scale and fine-grained access provided by online
networks like Facebook R© and Twitter R©. This work concerns the study of a similar large-scale and finely-
sampled social network, arguably as important but far less studied: the cellular social network. In particular,
cell-phone calls and text messages reflect an underlying social network; this work leverages a unique data-
set we have obtained to address several fundamental social network questions. We note that this work is in
its formulation stage and only some of the early explorations are discussed here in this abstract.

The source of data is the 30 months (from November 2006 – April 2009) record of cell-phone usages
of about 20 million users of an Asian telecom giant. This is a rich database which has monthly records of
various services like calls/SMS’s/MMS’s made by users, data/web usage etc, along with information such
as call timings, location ID and applicable discount schemes. It also has the data of complaints registered
and billing information. Separate cross-referenced tables record other demographic data about users such as
their age, gender, marital status, date of birth, call plan etc. The size of this database is ∼4 TB.

The nature and massive scale of this database provides unique opportunities and algorithmic challenges.
The richness of the data arises from the wide range of demographic and user meta-data provided and the
fact that the data represents “real” contact patterns. Some of the interesting problems which can be explored
in this framework include learning network structures (e.g. the friend/colleague circle of a group of users),
finding most influential users, detection and prediction of cascades/large-scale events (e.g., outbreak of
viral MMS or malware). The main challenges associated with these problems concern with pre-processing
required on the data to extract essential information pertaining to specific objectives. Working with the
social network as the fundamental unit, defining the notion of “friends” is highly subjective. But our prime
challenge arises from the massive size of the data which poses scalability and computational issues.

We look into the problem of finding influential users in a cellular network – given the social network
topology, how to choose the initial set of individuals to seed the influence, in order to maximize the word-of-
mouth/viral spread in the network within a given time frame. Crucially, we evaluate our schemes empirically
using the actual call timings and durations. The problem of influence maximization, with applications to
marketing, was studied by Domingos and Richardson [1]. Kempe, Kleinberg and Tardos [2] rephrased
influence maximization as a discrete optimization problem and developed a greedy algorithm for choosing
the initial seed set (the individuals to influence), which gives a 63%-approximate solution with respect to
the optimal one. However, the greedy algorithm is not scalable to social networks with large number of
nodes and edges. As a starting point, we construct a social network graph from one month of the call record.
Our long term goal is to develop an efficient and scalable algorithm to select the best initial seed set of
individuals. We intend to make the model more robust by incorporating the data from longer time duration,
demographic information and SMS/MMS patterns to get a better estimate of the edge strengths.

We consider the social network of mobile phone calls made by users during the month of January 2009,
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and represent this by an undirected graph G = (V,E), where V is the set of users. An undirected edge in
E is constructed between two users in V , if atleast 4 calls are exchanged between them in the entire month.
This graph results in a giant component G′ = (V ′, E′) with ∼820000 users in V ′ and ∼5 million edges
in E′. Indeed, one of our first main challenges is devising algorithms that remain tractable at this scale.
We simulate the spread of influence in G′ using a version of the independent cascade model for influence
dissemination. We assume that whenever a call is established between an influenced user A and a neutral
user B within 10 days since A got influenced, with some fixed probability p, the neutral user becomes
influenced. The weights are assigned to edges in E′ as follows: if m calls are exchanged between two users
during the entire month, we assign an edge weight of 1− (1− p)m/3, which is the probability of success in
influencing a neutral user within 10 days (we assume calls are made uniformly over the month). For a given
seed size k, we choose k users for influence maximization as per the following criteria:
1. Highest (weighted) degree: we choose k users with the highest (weighted) degrees,
2. Selective highest degree: we choose k users as follows – in every step, we choose 10 highest degree users
and eliminate some of their neighbors who have a high chance of getting influenced,
3. Shortest paths: we choose 2k users with highest degrees (we assume influence spreads only via shortest
paths) and choose k users in order of expected spread each user can produce via shortest paths.
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Figure 1: Performance of seed selection algorithms
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Figure 2: Time evolution of influence spread

The plots depicting performances of the seed selection algorithms are presented in Figure 1 for p =
0.2, 0.5. The time evolution of the number of the influenced users across the month is presented in Figure 2.
We are continuing work on development of optimal seed selection algorithms for influence maximization.
The hope is to obtain close-to-optimal yet scalable techniques for cellular large social networks.
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Good recruitment requires an accurate prediction of a candidate�s potential future per-
formance. Sports clubs, academic departments, and business �rms routinely use past per-
formance as a guide to predict the potential of applicants and to forecast their future perfor-
mance. A football club looks at goals scored or passes made, an academic department looks
at published papers, while an investment bank looks at past bonus earnings of applicants.
In this paper the focus is on researchers. Social interaction is an important aspect of re-

search activity: researchers discuss and comment on each other�s work, they assess the work
of others for publication and for prizes, and they join forces to coauthor publications. Scien-
ti�c collaboration involves the exchange of opinions and ideas and facilitates the generation of
new ideas. It follows that the characteristics of one�s collaborators and the general structure
of the collaboration network may reveal useful information about future productivity. We
also expect that access to new and original ideas helps researchers be more productive. So
we would expect that, other things being equal, highly connected individuals or individuals
who are �central�in the network are more likely to be productive in the future.
Centrality and proximity themselves arise out of links created by individuals and so they

re�ect their individual characteristics �e.g., ability, sociability, and ambition. For instance,
collaboration with highly productive coauthors may reveal that these coauthors �nd such
collaboration worthwhile. Since the ability of a researcher is imperfectly known, the existence
of such ties may by itself be informative. Moreover, if this is the case then, as individual
performance gradually reveals information about a person�s potential over time, we expect
network information to be more useful for young researchers and less so for older researchers.
In contrast, we expect access to new ideas to be valuable for all researchers. Consequently,
we expect the role of networks as facilitating �ows of ideas to remain relatively constant over
an author�s entire career. These observations form the basis of our empirical strategy.
The empirical work presented here �rst asks whether social network measures help pre-

dict future research output over and above the information contained in individual past
performance. We then investigate which speci�c network variables are informative and how
their informativeness varies over a researcher�s career.
Our �rst set of �ndings are about the information value of networks. We �nd that

incorporating information about coauthor networks leads to an improvement in the accuracy
of forecasts on individual output, over and above what we can predict based on the knowledge
of past individual output. The e¤ect is signi�cant but modest, e.g., the root mean squared
error in predicting future productivity falls from 0.677 to 0.663, while the R2 increases from
0.417 to 0.442. We also observe that several network variables � such as productivity of
coauthors, closeness centrality, and the number of coauthors �have predicting power. Of
those, the productivity of coauthors is the most informative network statistic among those
we examine.
The predicting value of network information varies over a researcher�s career: it is more

powerful for young researchers but declines systematically with career time. By contrast, in-
formation on recent past output remains a strong predictor of future output over an author�s
entire career. As a result, �fteen years after the onset of a researcher�s publishing career, the
prediction accuracy with and without network variables is very similar.
Our second set of �ndings are about the relative importance of signaling versus �ow of

ideas in explaining the predictive power of network variables. To ascertain their relative
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roles, we examine how the information content of speci�c network variables changes across
an individual�s career. This comparison builds on the idea that coauthor productivity con-
tains more information about the type of author while topological variables contain more
information about �ow of ideas. We �nd that coauthor productivity is initially informative
but this informativeness declines signi�cantly over time. By contrast, topological variables
such as centrality and degree are more modestly informative at the start of a career but
retain their informativeness across time.
Our third set of �ndings is about the relation between author ability and the prediction

value of networks. We partition individual authors in terms of past productivity and exam-
ine the extent to which network variables predict their future productivity. We �nd that
the predictive value of network variables is non-monotonic with respect to past productivity.
Network variables do not predict the future productivity of individuals with below average
initial productivity. They are also uinformative for individuals in the highest past produc-
tivity quantiles. But they are informative about individuals in between. Taken together,
these results predict that academics recruiters would bene�t from gathering and analyzing
information about the coauthor network of young researchers, especially for those who are
relatively productive.
This paper is a contribution to the empirical study of social interactions. Traditionally,

economists have studied the question of how social interactions a¤ect behavior across well
de�ned groups, paying special attention to the di¢ culty of empirically identifying social
interaction e¤ects. For an overview of this work, see for instance Mo¢ tt (2001) and Glaeser
and Scheinkman (2002). Identi�cation of network e¤ects is di¢ cult as links in a network
are endogenous and may be correlated with unobservable characteristics of individuals and
links. In this paper we take an alternative route: we focus instead on the predictive power
of social networks in terms of future research output.
We believe that the predictive value of social connections arises because they reveal

information about individuals that is not apparent from their past output. Knowledge
about a researcher�s recent coauthors �e.g., their number, seniority, and own productivity,
�constitutes a potentially valuable signal about the individual in question. This is because
these coauthors have privileged information about the individual. The fact that they have
coauthored with this individual indicates that this information is on average positive. Finding
that an individual with high quality coauthors has higher predicted output in the future
should not be interpreted as evidence of network e¤ects in the traditional causal sense.
Nonetheless, this knowledge can potentially be used by an academic department in making
recruitment decisions.
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Many important technical and policy decisions are made by committees of experts. Society 

relies on these committees to fairly combine information from multiple perspectives in 

order to reach a decision that one person could not make alone. Although the research on 

group decision-making is vast, analysis of committees of experts in a real-world setting 

have been relatively scarce. This may largely be ascribed to difficulty in gathering data 

(e.g., because it might be proprietary or simply not recorded) and the absence of a 

corresponding methodology. The advent of the internet has made much text data available. 

Furthermore, regulations such as the U.S. Federal Advisory Committee Act (FACA) of 

1997 ensure that transcripts of real-world expert committee meetings are available online or 

are available upon request. Finally, recent innovations in machine learning and 

computational linguistics have enabled the analysis of large sources of text data in a 

repeatable and consistent fashion. These methods have yet to be applied to the analysis of 

social data on a large scale. There is therefore an opportunity to apply some of these 

methods to enable a deeper empirical understanding of decision-making by committees of 

technical experts. Furthermore, some of these methods may be extended using signal 

processing techniques. Ultimately, these methods may help to generate quantitative insight 

into committee decision processes, perhaps enabling better decision outcomes.  Using a 

methodology presented in (Broniatowski and Magee, 2010) we quantify information flows 

between members of a set of the 37 FDA Circulatory Systems Devices advisory panel 

meeting transcripts from meetings held from 1997-2005, in which the panel voted on 

recommendations for device Pre-Market Approval. These panels were selected because of 

the required participation of multiple experts from different specialties who must 

nevertheless come to a decision regarding data. In addition, each meeting transcript 

contains a voting record that might be used as a data source. 

Data Acquisition and Coding 

Each voting member was coded according to his or her medical specialty (e.g., surgeons, 

cardiologists, radiologists, electrophysiologists, statisticians, etc.) and according to how 

s/he voted in each of the 37 meetings in our sample, as recorded in the meeting transcript. 

Linguistic data consisted of the text of each transcript. Non-content-bearing words, 

identified using a standard list, were automatically removed. The frequency of each 

remaining word was then counted and assigned to each speaker in the meeting. 

 

Generation of Social Networks 

Social networks were generated from the same set of 37 transcripts using a method based 

on the Author-Topic model (Rosen-Zvi et al. 2004). Briefly, for each meeting transcript, 

non-content-bearing words (e.g., “is”, “the”, “and”, etc.) were removed using a standard 

list. The remaining content-bearing words were then parsed into a “word-document 

matrix”, where each row represents a unique word, and each column represents an 

utterance spoken by a speaker in the panel meeting. Each entry in the matrix is therefore a 

count of the number of times a given word occurs in a given utterance. The Author-Topic 
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model was then used to fit each transcript’s words to a fixed number of topics, and to 

isolate the words that were specific to each voting member on each committee. Speakers 

who frequently shared the same topics were considered to be linked in a social network. 

This procedure was then repeated several times for each transcript in order to average 

across whatever probabilistic noise might exist in the Author-Topic model fit. Speakers 

who were frequently linked across multiple Author-Topic model fits were considered to be 

linked in the social network associated with that transcript. Full details of the methodology 

used to generate these social networks may be found in the article by Broniatowski and 

Magee (2010). 

 

Network Analysis Metrics 

For each network, we defined specialty cohesion as the total proportion of links between 

committee members who had the same medical specialty. This value was then compared to 

the specialty cohesion for 1000 random graphs with the same density and with committee 

members holding medical specialties as in the original network.  Specialty cohesion 

percentile is defined as the proportion of random graphs with lower specialty cohesion than 

the network generated from the transcript associated with that meeting. 1000 random 

graphs were used because this number was empirically determined to generate stable 

results. Similarly, we defined vote cohesion and vote cohesion percentile the same way, 

only substituting panel members’ votes for their specialties for the subset of 11 meetings in 

which there was a voting minority of at least two members. Subsequent results analyze the 

distributions of specialty cohesion percentile and vote cohesion percentile, and the 

relationships between these distributions.  

 

Directed Graphs 

We extend this preliminary method using cross-correlation techniques in order to generate 

directed social networks illustrative of the flow of influence within these meetings. 

Furthermore, we may quantify the impact that the committee chair has upon the meeting by 

determining, for each graph, which proportion of edges is part of a cycle. This is a metric of 

the hierarchy in the graph. The difference in this metric between graphs with and without 

the chair therefore quantifies impact of the chair on the meeting.  

 

Findings include insights into the impact of professional specialty upon decision-making, 

identification of different leadership styles on these committees and possible indications of 

panels in which panel members may have learned from one another in order to reach a 

consensus decision.   

 
 Broniatowski, D. & Magee, C.L. Analysis of Social Dynamics on FDA Panels using Social Networks Extracted from 

Meeting Transcripts. 2nd IEEE Conference on Social Computing, 2nd Symposium on Social Intelligence and 

Networking (2010). 

 Rosen-Zvi, M. et al. The author-topic model for authors and documents. Proceedings of the 20th conference on 

Uncertainty in artificial intelligence 487-494(2004) 
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This paper analyzes the social networks of both non-corrupt and corrupt projects within 

an organization and the effects of these two information types on communication patterns. The 
results of this multi-method study show that the type of information communicated between 
organizational members affects both behavior and network characteristics. By examining email 
data taken from Enron between 1998 and 2002, I find that in contrast to non-corrupt information 
networks, corrupt project networks are less connected, less reciprocal, and communication is less 
frequent. These different patterns appear to be the aggregate effects of individual level behaviors. 
When communicating information about corruption, individuals’ communications are also less 
symmetrical and less transitive. In other words, individuals are less likely to reciprocate 
communications or to introduce their alters when sharing corrupt information. The central claim 
of this research is that when information is meant to be kept secret as with corrupt information, 
the processes by which people share or discuss the information require different behaviors and 
strategies than if the information is public. These strategies then in turn alter the network form. 

In the first study, I look at the topological implications of information on six different 
project networks – three non-corrupt and three corrupt. Initially for each relation within a project, 
I calculated the tie-strength based on the frequency of emails exchanged and performed a paired 
t-test, with project information (corrupt/non-corrupt) as the grouping variable. Communication 
frequency is a common means by which to operationalize tie-strength (Granovetter 1973). The 
mean frequency for corrupt information was significantly lower 2.787 than for non-corrupt 
information 7.454 (t = -3.6025; df = 4,957, p < .001). This reduced traffic found in corrupt 
information networks may be explained by the desire of the participants to minimize the 
possibility of detection where each communication increases the risk of discovery. Next, I apply 
of a classic method of data normalization, z-score transformation, to provide a way of 
standardizing the data across a range of networks independent of their size and density (Robins 
and Alexander 2004). The z-scores for each project were based on 100 simulated random 
networks, conditioned on size and degree distribution. For corrupt communications, the network 
structure is sparse with comparably low connectivity between actors (z-score = -37.0402) as 
compared to non-corrupt networks (z-score = -20.6273). These lower levels of connectivity may 
serve as organizational buffers, sealing off groups of members from each other (Simmel 1950; 
Goffman 1970). Such fractioned networks also decrease the likelihood identifying all the 
participants. Finally, corrupt communication structures are overwhelmingly asymmetrical (z-
score =-275.423), meaning that there are few reciprocal communications. By contrast, non-
corrupt communication structures are far more reciprocal (z-score =-49.2616). A structure that 
contains a high number of asymmetrical or nonreciprocal ties delineates differences in 
information acquisition, with information generally flowing to the most powerful or highest 
status members in the network (Brass, Butterfield, and Skaggs 1998). Hierarchical structures 
such as these where power is centralized are common to illegal enterprises (Baker and Faulkner 
1993). In sum, in the first study I find evidence that the group level communications of corrupt 
networks differ from the non-corrupt networks along three dimensions that are consequential for 
enterprises. 

In the second study, I explore how corrupt and non-corrupt information influences 
individual communication strategies. Here 106 individuals were identified who participated in 
both the corrupt and non-corrupt projects I observe in study 1, totaling 198 observations across 
the networks. For these individuals, I analyze three different dependent variables to determine 
the effect of information on the member’s communication network. These measures are the 
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egocentric analogues to the sociocentric measures used in study 1. In order to control for the 
individual-level differences and correct for non-independence common to network samples, I 
employ fixed-effects estimates. The findings indicate that individuals systematically channel 
non-corrupt and corrupt information differently through their ego-networks. First, for individuals 
the corrupt information is not significant for tie-strength (0.603; p < 0.279), however it is 
positive, as we would expect given the findings in the first study. Next, corrupt information does 
increase asymmetry in the egocentric networks (0.323; p < 0.108), meaning the communication 
is less reciprocal for corrupt email communication. Two primary benefits arise from reciprocity 
in communication. The first is simply instrumental by allowing individuals to exchange and 
clarify information (March and Simon 1958). Second, reciprocity helps to engender trust 
between parties (Molm, Schaefer, and Collett 2007). Finally, corruption also reduces transitivity 
for individuals in corrupt projects (-0.328; p < 0.152). Transitivity refers to the tendency of two 
individuals, who both share a connection to a common third person, to also become tied to each 
other (Davis, 1963; Feld, 1981; Holland and Leinhardt 1971). Generally, transitivity is optimal 
for sharing information effectively, encouraging cooperation, and reducing conflict because 
information can easily be relayed from A to B and then to C. Thus, individual decisions about 
what information to share and with whom to share it appear to be influenced by content. 

In this study, I show the effects of information on both egocentric and sociocentric 
structures. Specifically, the results support the role of content specification in social network 
research. Given these findings, it is clear that disaggregating networks by information content 
presents new opportunities to better understand the link between social structure and individual 
behavior. By investigating networks by information type, future research will gain insight into 
the individual-level dynamics of how ties form and how networks are reproduced. To date social 
network research has examined social structure as a plumbing system, containing and directing 
the flow of information, rather than the natural watercourses that carve the riverbeds and canyons 
of social relations. 
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1   INTRODUCTION 

 

     Noting a lack of effective methods for 

simultaneously analyzing datasets with social and 

spatial components, we build a system (Social/Spatial, 

or S/S) for the interactive exploration of dynamic 

networks as they are linked with map representations. 

We illustrate the uses of our software environment with 

an example analysis which uncovers hidden patterns in 

the spatial, social and temporal aspects of the U.S. 

legislative system, via a social network of 

Congressional Roll Call Votes in the U.S. House of 

Representatives. 

     Roll call votes have been analyzed for statistical 

patterns in previous studies. [1] In two different 

studies, Porter et al employ network science techniques 

like hierarchical clustering and modularity to model the 

system of House committees and subcommittees, in 

terms of shared members, and in terms of party 

majorities on each committee. [2] [3] We approach the 

U.S. Congressional Representative social network in a 

less constrained manner, as we do not concentrate on 

formal groupings, but informal connections visible 

through similar voting patterns. Some have noted that 

this ‗informality‘ though seemingly unconstrained, 

does not show autonomy in representative decision 

making, but that representatives are driven by affiliated 

party, and the level of party alignment (as shown by 

voting records) has varied over time. [4] [5]   

     While literature on congressional social ties all seem 

to point to clusters of relationships in the U.S. House of 

Representatives, few studies have attributed these 

relationships to similarities in geography or in the 

demographic make-up of constituents. One such study 

showed that funding for statewide projects in congress 

favored the states with many representatives, but did 

not mention a pattern of intra-state members having 

closer relationships. [6] In terms of constituent 

demographics—an inherently topological feature—

district representatives and their friendships are rarely 

causally linked to the similar nature of their constituent 

district demographics. One example is study of 

partisanship links low-home ownership to certain 

representatives. [7] There are certainly complex 

interactions that drive decision-making and 

relationships in the House, which represents the largest 

social network in our three branches of federal 

government; We can only imagine the social 

―balancing act‖ between pleasing constituents, 

sponsoring bills, interacting with lobbyists, following 

party agendas, creating trust networks for 

communication, collaboration, shared ideas and 

initiatives, negotiating provisions, and maintaining 

one‘s own sense of ethics and orthopraxy.  

     Harkening back to the agenda set by [2] [3], we 

build a social network of congressional representatives 

based on their voting preferences, in order to analyze 

the holistic network behavior with ‗new‘ methods for 

complex network analysis. [8] Our study is novel in 

that is brings together a social network and the 

geographic districts and demographic constituencies 

that these network actors represent—so that their 

decisions and behavior can be analyzed in terms of 

hidden correlations in friendship, geographic clustering 

and demographic homophily.  

     To find these correlations, we use a custom tool, 

Social/Spatial, which links a force-directed, agent-

based dynamic network with an interactive U.S. 

Congressional District map (Fig. 1), enabling instant 

visual knowledge discovery. This software package 

draws on previous development efforts, using the open 

source S/S (for geographic visualization and analysis) 

and JUNG (for network visualization and analysis) 

libraries as core components of S/S. Normally, we 

assume that nearby places have similar ideologies, but 

using S/S we are able to see the friendships, loyalties, 

and disagreements between people in places that we 

may have never thought had anything in common.  

2 DATASET AND NETWORK 

 

     We create a network based on the number of 

agreements between two unique congress people 
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during the first session of the 111
th
 Congress, in 2008, 

with 445 total members.  Edges are created by tallying 

985 ―Roll Call‖ votes, where an agreement is 

constituted as two Yays or two Nays between two 

agents. A disagreement is recorded if an agent voted 

opposite another agent, or if one or both of the agents 

declined to vote. (The latter make up a relatively small 

percentage of the dataset.)  

     The weighted edge distribution of our network 

depicts a bimodal distribution that is most probably 

driven by polarization of the Democratic and 

Republican Party affiliation in the House. (Fig. 2) It is 

clear that there are pairs of people where their voting 

pattern and ideologies can be considered either 

‗clashing‘ or ‗cooperating‘. Therefore we mark 

clashing pairs with a 1, and cooperating pairs with a 5 

in our network. Henceforth, the term friendship (and 

friend) will be used to describe the relationship 

between congresspeople who show aligning interests: 

specifically, those in the 660 – 985 agreeing votes 

range. We operate on the theoretical basis that stronger 

ties indicate a relationship where information is 

transferred faster, ideologies are shared, trust is deeper, 

opinions are heard and there might be a stronger ability 

to convince each another to vote a certain way—

whether implicitly or explicitly.  

3 RESULTS 

 

      We incorporate the following deterministic metrics 

into the system. The following social network measures 

are implemented under four major themes:   

     Theme A is comprised of a group of community 

detection metrics like cliques (maximally complete 

subgraphs), hierarchical clusters (groups that form 

within larger groups), [9-11] modularity measures (the 

propensity of a member of a partition to talk to people 

in the partition more than to another singular 

partition).[12,13] Theme B incorporates popularity 

measures like, degree centrality (The number of nodes 

adjacent to a given node), betweenness centrality (the 

number of times a node occurs on all system geodesic 

paths), flow betweenness (the contribution of a node to 

all possible maximum flows), [14-16] and hubs & 

authorities (A high hub node connects to many good 

authorities and a high authority node receives from a 

number of strong hubs). [17, 18] Theme C models 

spreading processes, like time-step propagation, 

resistance to percolation, cascades and rule-based 

diffusion—like voter, gossip, SIS, SIR and SISR 

models. [19-21] Theme D represents attachment 

behavior, namely, homophily (how much an ego's 

attaches to its alters based on a specified attribute, or 

the correlation between ego attributes and alter 

attributes) [22] and system clustering coefficients (the 

density of an agent‘s open neighborhood). [21] 

     These network measures are not the end of our 

quantitative evaluative statistics, as we have not 

mentioned temporal or spatial trends. First, the 

congressional data lends itself to temporal dynamic 

network, as a mostly static number of districts and 

representatives act on different issues each year. By 

using the New York Times Congressional Roll Call 

Vote API, we are able to feed multiple years into the 

system for exploring temporal change. 

     Secondly, the geographic trends are quantified in 

two ways. First is the spatial position of competing or 

cooperating districts, their geographic adjacency, 

proximity and propensity to form cohesive regions. 

[23] The tightness of these district clusters are 

measured with spatial statistics Moran’s I or Geary’s C 

for statistically significant spatial clusters of behavior 

groups [24, 25], Hot & Cold Spot Detection, and LISA 

[26]. In addition to measuring proximal regions, 

demographic (feature) clustering shows the correlation 

between certain constituent social features and  U.S. 

Census information like of Income, Urban Areas, 

Racial Percentages, or areal designations like 

Economic Development Regions, or Statewide 

Alliances. These underlying features of a geographic 

district or socio-demographic constituency are 

correlated with the relative party-loyal, maverick, 

authority, cliquey, or neutral behavior of the 

congressman in the wide congressional social network. 

4    CONCLUSIONS 
 

     The overarching goal of S/S is to provide a 

workspace for the interactive exploration of dynamic 

networks as they are linked with map representations. 

Our system is robust enough to accommodate temporal 

changes in network agents and relationships for 

archives of past Congresses. With access to each 

congressperson‘s friends, alters, social group, 

propensity to agree with other certain agents, or to 

unconventionally float on the periphery of the network, 

we can see how the 435 unique social groups in the 

United States different economic, demographic, and 

localities are relating to one another through their 

representative. We enumerate some other examples of 

how social networks and spatial relationships can 

illustrate each other, and in particular, how spatial 
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relationships can illustrate friendship and agreement behaviors that would otherwise be difficult to observe.   
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Figure 1 (top): The java-based 

GeoViz Social analysis system 

allows for the simultaneous and 

dynamic exploration of social 

networks through interactive 

highlighting (see yellow), 

statistical and geographic 

representations of the 

relationships between 

congressmen, and their 

corresponding constituencies. 

  

Figure 2 (left): The allocation 

of edge weight values among 

all node pairs depicts a bimodal 

distribution. 
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ABSTRACT
We consider the task of topology discovery of sparse random
graphs using end-to-end random measurements (e.g., delay)
between a subset of nodes, referred to as the participants.
The rest of the nodes are hidden, and do not provide any
information for topology discovery. We consider topology
discovery under two routing models: (a) the participants
exchange messages along the shortest paths and obtain end-
to-end measurements, and (b) additionally, the participants
exchange messages along the second shortest path. For sce-
nario (a), our proposed algorithm results in a sub-linear edit-
distance guarantee using a sub-linear number of uniformly
selected participants. For scenario (b), we obtain a much
stronger result, and show that we can achieve consistent re-
construction when a sub-linear number of uniformly selected
nodes participate. This implies that accurate discovery of
sparse random graphs is tractable using an extremely small
number of participants. We finally obtain a lower bound
on the number of participants required by any algorithm to
reconstruct the original random graph up to a given edit dis-
tance. We also demonstrate that while consistent discovery
is tractable for sparse random graphs using a small number
of participants, in general, there are graphs which cannot
be discovered by any algorithm even with a significant num-
ber of participants, and with the availability of end-to-end
information along all the paths between the participants.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory.

General Terms
Algorithms, Theory.

Keywords
Topology Discovery, Sparse Random Graphs, End-to-end
Measurements, Hidden Nodes, Quartet Tests.

SIGMETRICS’11, June 7–11, 2011, San Jose, CA, USA.

1. INTRODUCTION
Inference of global characteristics of large networks using
limited local information is an important and a challenging
task. The discovery of the underlying network topology is
one of the main goals of network inference, and its knowledge
is crucial for many applications. For instance, in communi-
cation networks, many network monitoring applications rely
on the knowledge of the routing topology, e.g., to evaluate
the resilience of the network to failures [34,40]; for network
traffic prediction [25,51] and monitoring [9], anomaly detec-
tion [7], or to infer the sources of viruses and rumors in the
network [47]. In the context of social networks, the knowl-
edge of topology is useful for inferring many characteris-
tics such as identification of hierarchy and community struc-
ture [27], prediction of information flow [5,53], or to evaluate
the possibility of information leakage from anonymized so-
cial networks [11].

Traditionally, inference of routing topology in communica-
tion networks has relied on tools such as traceroute and
mtrace [3] to generate path information between a subset
of nodes. However, these tools require cooperation of in-
termediate nodes or routers to generate messages using the
Internal Control Message Protocol (ICMP). Increasingly, to-
day many routers block traceroute requests due to privacy
and security concerns [30, 54], there by making inference
of topology using traceroute inaccurate. Moreover, tracer-
oute requests are not scalable for large networks, and cannot
discover layer-2 switches and MPLS (Multi-protocol Label
Switching) paths, which are increasingly being deployed [43].

The alternative approach for topology discovery is the ap-
proach of network tomography. Here, topology inference is
carried out from end-to-end packet probing measurements
(e.g., delay) between a subset of nodes, without the need for
cooperation between the intermediate (i.e., non-participating)
nodes in the network. Due to its flexibility, such approaches
are gaining increasing popularity (see Section 1.2 for details).

The approach of topology discovery using end-to-end mea-
surements is also applicable in the context of social networks.
In many social networks, some nodes may be unwilling to
participate or cooperate with other nodes for discovering the
network topology, and there may be many hidden nodes in
“hard to reach” places of the network, e.g., populations of
drug users, and so on. Moreover, in many networks, there
may be a cost to probing nodes for information, e.g., when
there is a cash reward offered for filling out surveys. For 
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Social network-based interventions (SNI) can target at least five different facets of social 

networks: environment and contexts of social networks, structures of social networks, processes (e.g., 

diffusion, learning, and searching) on social networks, meanings and trust attached to social ties, and 

strategies of networking.  In this study, I will focus on how to utilize social network features, more 

specifically, how to choose central nodes or tight groups in a social network, to accelerate or consolidate 

the effects of any hypothetical intervention.  

In practice, such SNIs have a lot of applications in areas such as public health, social marketing, 

commercial delivery, or even military operations. For examples, we may want to choose central nodes 

(i.e., students) in a classroom to act as opinion leaders to accelerate the diffusion of some positive 

information, attitudes or behaviors that are desirable to us researchers, or we may want to choose certain 

central cities on a transportation network as hubs to optimize the efficiency of a delivery system, and 

lastly, we many want to choose certain cities on a railroad network as military objectives to implement 

targeted attacks and maximize the efficacy of military offense. 

In this study, I will first review existing methods in choosing central nodes and tight groups in a 

social network, pointing out their contributions and limitations, and then introduce the algorithms I have 

developed for that use. For example, previous methods in choosing central nodes tend to either generate 

nodes that are redundant with one another or ignore the direction of social ties, only applicable to 

undirected social networks. In this study, I develop an algorithm to address both issues and provide more 

options than previous ones to select central seed nodes, e.g., by indegree (for the purpose of influence), 

by outdegree (for the purpose of spreading information) or by both. Same importantly, the new 

algorithm, compared with previous greedy optimization algorithm which is not guaranteed to find an 

optimal set of central nodes, has been confirmed to find at least one optimal or very close to optimal set 

of central nodes. In short, my algorithm starts with a random set of nodes and then adds the next least  
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redundant node one by one until reaching the designed size of seed nodes. The above process can be 

repeated many times to achieve better optimization. 

How to extract groups from a social network for group-based interventions is another challenge. 

Previous community (or group) detection approaches either ignore the directionality of social networks 

or tend to choose groups not from a sociological perspective but only from a data mining perspective 

and so often produce unmeaningful groups. In contrast, in this study I propose a theory-driven approach. 

First, I rewire a social network by keeping only symmetrical ties so that only strong relationships are 

retained in the network. Then I extract tight cliques (i.e., a maximal set of nodes in which all nodes have 

connections to each other) from the network. The last step is to pick cliques so that the total number of 

nodes being selected matches with the designed sample size and that any node being selected has at least 

one connection with others being selected. This will ensure no one will be treated as isolate in any 

group-based intervention. The last step is not trivial, as the last node to be selected must come from the 

neighborhood of the already selected nodes. In my view, this approach guarantees generating 

meaningful social groups and utilizing group pressure in a maximally positive way. Both this group 

selection algorithm and the above central nodes selection algorithm have been developed and 

incorporated in an R module “SNIP: Social Network-Based Interventions & Policies” and will be geared 

and released for public use soon. 

Last to illustrate, I have applied the above algorithms to a health education program involving 

around 90 classes and 4500 students that aim to accelerate the diffusion of positive information, attitudes 

and behaviors regarding cigarette smoking among adolescents.! 
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Microsoft Research

milanv@microsoft.com

We consider decentralized algorithms where each node in a network aims at computing an aggregate

quantity of all node states using only local information without any centralized agency. Recently, a large

amount of interest on this type of algorithms has been arisen in various contexts such as social networks [1,

2], Internet [3, 4], and biological systems [5], because they are not only useful to explain phenomena

observed in a network system, but also useful for the design of new computation protocols. Since many

network systems inherently contain restrictions on memory and communications (i.e. parsimonious),

designing a decentralized algorithm under such restrictions is an important problem. There have been

many studies trying to account for these restrictions. For example, in the context of averaging algorithms,

randomized gossip algorithms based on reversible Markov chains [6] have been considered as well as

averaging algorithms based on non-reversible Markov chains [7]. For the averaging problem, also the

effects of quantization of messages exchanged between nodes have been studied [8, 9].

In this paper, we study a rank aggregation problem where the goal is to rank a set of alternatives

in decreasing order of users’ preference in a decentralized manner. A specific example is voting over a

set of alternatives, which frequently arises in social networks including surveys of consumer preferences.

The goal is to identify a list of top k popular products in decreasing order of their popularity. Such

cooperative decision making problem arises in a variety of applications such as in surveys of preference

in social networks, decentralized database systems, and sensor networks.

The main contributions of our work are in (1) allowing for arbitrary number of alternatives m ≥ 2,

and (2) algorithms for ranking that are based on computing a generalized version of the mode, and (3)

allowing for user preference across a set of alternatives. For computing the mode in network systems

where each node prefers one out of two alternatives, the classical voter model [10–12] has been extensively

studied. Algorithms for binary consensus were proposed to serve as an improvement of the voter model

with respect to the error probability and the convergence speed to the correct consensus [13–15]. A

quantized version of the gossip algorithm was suggested to identify the quantization interval containing

the average value [8]. Using this algorithm, the majority voting problem can be solved with only four

states per node. However, these works are restricted to the case of two alternatives.

The detailed setup that we consider is as follows: we consider a network system that consists of

nodes [n] = {1, 2, . . . , n} where n ≥ 1 and a finite set of alternatives [m] = {1, 2, . . . , m} where m ≥ 2.

The preference of each node j ∈ [n] over alternatives is described by the vector of ranking scores

&vj = (v1, v2, . . . , vm) where vi ≥ 0 and
∑m

i=1 vi = 1. A vector of ranking scores &vj is such that the i-th

coordinate of this vector represents preference of node j for alternative i. A top-k ranking is a tuple of

alternatives (a1, a2, . . . , ak), for k ≤ m, such that ai ∈ [m] for every i, and U(a1) ≥ U(a2) ≥ . . . ≥ U(am)

where U(ai) is the sum of ranking scores for alternative ai over all nodes. The ranking problem is to

construct a decentralized algorithm which ensures that every node computes a top-k ranking correctly

after finitely many number of iterations.

First, we propose an algorithm that computes the full ranking of alternatives for any connected

network graph by generalizing the discretized averaging algorithm [8]. Our algorithm runs in a time

1 
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equivalent to the mixing time of the corresponding random walk in the network. Our algorithm uses

2m(m−1) states per node. Although this algorithm runs correctly on any connected network graph, it is

not parsimonious in the required memory per node. Next, we present parsimonious algorithms for the

mode computation and the top-k ranking computation for the case of small k.

Our mode computation algorithm is described as follows. As the behavior of bloggers, at each

time step, a randomly chosen node observes another node chosen uniformly at random and updates its

preference state. The main idea of the update rule is the introduction of two extra states (weak and

strong) for each alternative j ∈ [m]. Based on this idea, we prove that this algorithm converges correctly

with probability of error that diminishes exponentially with the total number of nodes; this result is

established using mean field arguments along with a concentration inequality for random processes.

Finally, we propose an efficient algorithm for computing a top-k ranking. This algorithm starts with

assigning to each node a random k-ranking state (b1, b2, . . . , bk), where bi ∈ [m] for every i, according to a

probability that depends on the ranking score vector of the node. At this step, m(m−1) . . . (m−k+1) =

O(mk) many k-ranking states are needed. We prove that the problem of computing the mode among

a set of k-ranking states is equivalent to the problem of computing the top-k ranking on the set of the

original alternatives. Using our mode computation algorithm, we prove that the error probability of our

top-k ranking algorithm decays exponentially with the total number of nodes. We examine convergence

of our algorithms using simulations.
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There are two complementary approaches to extracting information from a social network. The
first approach is structure-based: it looks for interesting structural features (nodes, sub-networks,
diffusion properties, etc.), where “interesting” is defined according to some external criterion. The
second approach is model-based: it attempts to gain insight into the dynamics driving a network’s
formation by treating it as a random instantiation from a parametrized stochastic process. It
turns out that in many situations, the two approaches are duals of each other. Characterizing the
structural features of a network corresponds to estimating the parameters of a random network
model. In particular, degree centrality and modularity are closely related to two specific random
network models.

Degree centrality

Degree centrality measures the importance of a node with respect to the rest of the network; it
provides a way of ranking a network’s nodes [3, 5]. Suppose we are given an undirected network
with n nodes, encoded by an n×n symmetric binary matrix X. Degree centrality di measures the
importance of node i by

di =
∑

j 6=i

Xij ,

where Xij is the ij element of X. The degree centrality of node i is a count of the number of edges
with i as an endpoint.

Degree centrality turns out to be related to a random network model parametrized by node spe-
cific importance parameters α1, . . . , αn. The model,M(0), considers the edges to appear randomly,
where edge i ∼ j appears independently of all others with probability pij specified as

M(0) : logit pij = αi + αj .

Under this model, if X is sparse enough, then the maximum likelihood estimate of the ith node-
specific parameter is

α̂i = α̂0 + log di +O(1/n),

where α̂0 is a constant depending on X, and the remainder term is often negligible. Notably, α̂i is
essentially a monotone transformation of di.

Modularity

Modularity and its scale-dependent generalization measure the quality of a structural grouping of
the nodes in a network; maximizing modularity gives rise to a natural node partition [1, 2, 4]. As
above, suppose we are given an undirected network with n nodes, encoded by an n× n symmetric
binary matrix X. A partition of the n nodes into K groups can be encoded by vector g =
(g1, . . . , gn), where gi is the group of node i and gi ∈ {1, . . . ,K}. Modularity Qγ(g) measures the
quality of partition g by

Qγ(g) =
∑

i<j

(Xij − γ p
(0)
ij ) δ(gi, gj),

where γ ≥ 1 is a scale parameter, p
(0)
ij is a “null” estimate of the probability of edge i ∼ j appearing

in the absence of community structure, and δ is the Dirac delta function. The modularity of node
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partition g is motivated as a sum of residuals between the observed withtin-community edges and
the null expected within-community edges.

Modularity turns out to be related to a random network model parametrized by group mem-
bership parameters g1, . . . , gn and positive strength factor λ. The model, M, considers the edges
to appear randomly, where edge i ∼ j appears independently of all others with probability pij
specified as

M : logit pij = logit p
(0)
ij + λ δ(gi, gj).

Under this model, if maxij{p
(0)
ij } is small enough, the log-likelihood is

`(g, λ) = `0 + λQγ(g) +O(λ2),

where `0 is a constant depending on X and γ = γ(λ) = [exp(λ)− 1]/λ, and the remainder term is
often negligible. Notably, `(λ, g) is essentially a monotone transformation of Qγ(g).

Implications

The explicit relationship between degree centrality and model M(0) gives us a parametric inter-
pretation of di. Likewise, the explicit relationship between modularity and model M gives us a
parametric interpretation of γ and Qγ(g). With these interpretations, we can leverage standard
statistical machinery to incorporate prior information about node importance and node partitions,
we can construct confidence intervals and perform hypothesis tests related to these quantities, and
we can employe model selection tools like AIC and BIC to choose the number of groups, K. Taking
the dual perspective, we can gain insight into how degree centrality and modularity are related
to the dynamics driving network formation. The two approaches to extracting information from
networks—structure-based and model-based—turn out to be closely related, and both approaches
can profit from this relationship.
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Degree Distributional Metric Learning
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Introduction. Real-world networks often consist of
nodes with informative attributes as well as links. To
properly model these networks, it is necessary to learn
how attributes of the nodes relate to the connectiv-
ity structure. Metric learning is a natural framework
for transforming the raw node features to match the
structural properties of a graph. Traditional met-
ric learning algorithms primarily model the similarity
between nodes and not structural properties, such as
degree distributions. Degree distributions play a cen-
tral role in graph structure analysis [1]. The degree
distribution for some nodes may be non-stationary
and depend on their attributes, particularly if some
attributes naturally relate to connectedness. For ex-
ample, in the LinkedIn network, an individual whose
job area is “Software Sales” is likely to have more
connections than an individual whose area is “Soft-
ware Programmer”. We propose degree distributional

metric learning (DDML), a method for simultane-
ously learning a metric and degree preference func-
tions such that the combination captures the struc-
ture of the input graph and allows for more accurate
link prediction from only node features.

Algorithm Description. The learning algorithm
is given training data consisting of N pairs of node
feature vectors and corresponding adjacency matri-
ces {(X1,A1), . . . , (XN ,AN )}, where each row i of
Xk ∈ R

nk×D represents one of nk D-dimensional
real-valued node feature vectors denoted by (xk

i )>,
and each Ak ∈ B

nk×nk is a directed adjacency ma-
trix. DDML then outputs a similarity function f :
{RD, RD} 7→ R that takes two vectors as input and
outputs a real value, and a degree preference func-
tion g : {RD, N} 7→ R takes a node descriptor vector
and a candidate degree d and outputs a real valued
preference score for that node having degree d.

Matrices M ∈ R
D×D, and T,S ∈ R

n×D, where n =
maxk nk, define a degree distributional metric. The
similarity function is 1 f(xi,xj ;M) = x>i Mxj . Using
the notation that sc is the 1×D dimensional c’th row
of S, the degree preference function is g(xk

i , b;S) =
∑nk−b

c=1
scx

k
i . A graph is predicted by maximiz-

1If M is positive semi-definite (PSD), it can be used to
describe a metric. Omitting the PSD requirement allows the
similarity function to be asymmetric, which allows representa-
tion of directed graphs. Nevertheless, we always refer to the
algorithm as degree distributional metric learning.

ing F (A|Xk,M,S,T) =
∑

ij|Aij=1
f(xk

i ,xk
j ;M) +

∑
i g
(
xk

i ,
∑

j Ak
ij ;S
)

+
∑

j g
(
xk

j ,
∑

i Ak
ij ;T
)
. This

optimization is computable by a reduction to a max-
imum weight b-matching [3]. Using normalized Ham-
ming distance ∆(Ak, Ã) =

∑
ij|Ak

ij 6=Ãij
1/(n2

k − nk),

i.e., the proportion of misclassified edges, as a loss
function and the Frobenius `2-norm of the parameter
matrices as a regularizer, learning is done by solving

min
M,S,T,ξ≥0

1

2
(||M||Fro + ||S||Fro + ||T||Fro) + Cξ, s.t.

1

N

N∑

k=1

[
F (Ak|Xk,M,S,T)− F (Ãk|Xk,M,S,T)

]

≥
1

N

N∑

k=1

∆(Ak, Ã)− ξ, ∀{Ã1, . . . , Ãn}. (1)

The optimization is a quadratic program with ex-
ponentially many linear constraints, and is of the
same form as a structural support vector machine

(SVM) [4]. Thus, the established cutting-plane ap-
proach (and efficiency guarantees) can be applied.
The solution to (1) is found by maintaining a work-
ing set of constraints, solving for the optimal M,
S, and T, then adding the worst-violated constraint
by the current solution and repeating. The worst
violated constraint is found by a separation oracle,
Ãk = argmaxA F (A|X,M,S,T) + ∆(Ak,A). This
is computed by adding the decomposed loss to the
primary edge weights of the b-matching input.

Experiments. We consider comparisons against
two baseline models of varying richness. The sim-
plest model classifies node-pairs using a support
vector machine (SVM). The SVM receives training
data as pairs of inputs and outputs (binary labels)
{[xk

i (1)xk
j (1), . . . ,xk

i (D)xk
j (D)], (Ak)ij}, and then es-

timates a weight vector w. The second model, M-
learning, learns a linear transform matrix M without
any degree information, predicting the presence an
edge if xiMxj is a positive quantity. We learn M by
the same optimization as DDML except with the S

and T matrices fixed at zero. The SVM, M-learning
and DDML approaches bring increasing model rich-
ness. The SVM approach is equivalent to learning an
M matrix that is only nonzero along the diagonal.
Similarly, M-learning is equivalent to DDML with
no degree distribution information. 
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Figure 1: True and Learned M matrices from Syn-
thetic Tests. For each sampling scheme, the models
that do not learn the active sampling parameters in-
adequately model the feature interactions.

Synthetic Graphs. We generate data and graphs
from three sampling schemes. For each scheme, we
train on five graphs and test on five new graphs. To
generate graphs, we randomly sample 50 data vectors
from R

4 uniformly from [0, 1]4 and predict different
M, S and T matrices. First, we use a diagonal M

matrix and zero degree preference. Second, we use
a full M matrix and zero degree preference. Third,
we generate a random M matrix and random S and
T matrices. All methods perform well when data is
generated from their corresponding models, but the
baselines fail on graphs from the richer generative
processes. E.g., in the third scheme, only DDML
predicts near-perfectly. See Fig. 1.

Wikipedia Lists. We conducted an experiment to
predict the link structure between Wikipedia articles
in predefined categories using bag-of-words features
for each article. For each category, we collected the
count of word-occurrences in articles listed on the
main category page and directed links between the
articles within each category. We squash the word
counts with the square root function and reduce di-
mensionality to 20 by applying non-negative matrix
factorization [2]. We train the algorithms on cat-
egories “linear algebra topics”, and “mathematical
functions”, and test on “computer science topics”,
“data structures”, and “graph theory topics”. DDML
predictions produce an average F1-score of 0.1255,
M-learning scores 0.0930, and SVM scores 0.0534 and
a fully-connected graph scores 0.0561.

We also compared the ranking of edges obtained by
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Figure 2: ROC Curves for Wikipedia Link Predic-
tion. These plots compare the true and false positive
rates of the rankings returned by the three learning
algorithms for predicting the edges of held out graphs.

the three models. Since the DDML model is richer
than a simple ranking of edges, we greedily select
edges in order according to the gain in current over-
all weight, which takes into account the edge weight
itself as well as the reward for the change in degree
induced by adding each edge. For M-learning and
SVM, the ranking is the ordering of prediction val-
ues. The receiver order statistics (ROC) curves for
each of the held-out test graphs are in Fig. 2.

Discussion. Metric learning is a natural framework
for modeling graph data containing both connectivity
information and node attributes. We have demon-
strated that it is insufficient to learn only a metric
that defines node similarity merely pairwise. To prop-
erly model how nodes connect, it is necessary to es-
timate both a metric and a set of degree preference
functions which allow the model to better match the
structural properties of real networks.
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Visualizing Social Networks with Structure Preserving Embedding
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1 Introduction

We propose an adaptation to Structure Preserving
Embedding (SPE) based on stochastic gradient de-
cent that allows for visualization of large social net-
work datasets. SPE finds a low-dimensional repre-
sentation of nodes in a network which is structure-

preserving, meaning a connectivity algorithm such as
k-nearest neighbors will recover the original connec-
tivity pattern of the network exactly from only the co-
ordinates of the nodes in the low-dimensional embed-
ding. There are many possible goals for network visu-
alization algorithms, such as minimizing edge cross-
ings, bringing neighbors close, pushing away uncon-
nected nodes, highlighting clusters, and preserving
graph distances. We propose that accurate visualiza-
tions of social networks should preserve the underly-
ing topological structure of the network. In previous
work, we have presented Structure Preserving Em-
bedding (SPE) [3], an algorithm based on semidefi-
nite programming and singular value decompositions
designed to find such embeddings. In this abstract,
we present a low-rank approximation to the original
algorithm, implemented using a fast custom solver
based on projected stochastic gradient descent, which
allows the technique to scale to larger networks.

2 Algorithm

Given a network of n nodes represented as a graph
with adjacency matrix A ∈ B

n×n, SPE finds an em-
bedding L ∈ R

d×n such that d is small and running
a connectivity algorithm such as k-nearest neighbors
on L returns A. As first proposed, SPE learns a ma-
trix K via a semidefinite program (SDP) and then
decomposes K = L>L by performing singular value
decomposition. In contrast, this article proposes opti-
mizing L directly. Although for d < N , this problem
is now non-convex, because of the stochastic nature
of the optimizer we have found the algorithm does
not suffer from local minima in practice.

SPE for greedy nearest-neighbor constraints solves

the following SDP:

max
K∈K

tr(KA)

Dij > (1 − Aij) max
m

(AimDim) ∀i,j

where Dij = Kii + Kjj − 2Kij and K = {K �
0, tr(K) ≤ 1,

∑

ij Kij = 0}. The constraints re-
quire the embedding of each node to be more dis-
tant from its non-neighbors than its neighbors. Let
S = {C1,C2, ...Cm} be the set of all triplet con-
straints, where each Cl is a constraint matrix corre-
sponding to a triplet (i, j, k) such that Aij = 1 and
Aik = 0. This set of all triplets clearly subsumes the
distance constraints above, and allows each individ-
ual constraint to be written as tr(ClK) > 0 where
tr(ClK) = Kjj − 2Kij + 2Kik − Kkk. Temporarily
dropping the centering and scaling constraints, we
can now formulate the SDP above as maximizing the
following objective function over L:

f(L) = λtr(L>LA) −
∑

l∈S

max(tr(ClL
>L), 0).

Note that we have introduced a Lagrange multiplier λ

as an additional parameter which trades-off between
the loss term and regularization term. We will max-
imize f(L) via projected stochastic subgradient de-
cent. Define the subgradient in terms of a single ran-
domly chosen triplet:

∆(f(L),Cl) =

{

2L(λA − Cl) if tr(ClL
>L) > 0

0 otherwise

and for each randomly chosen triplet constraint Cl, if
tr(ClL

>L) > 0 then update L according to:

Lt+1 = Lt + η∆(f(Lt),Cl)

where the step-size η = 1
√

t
. After each step, we

can use projection to enforce that tr(L>L) ≤ 1 and
∑

ij(L
>L)ij = 0, by subtracting the mean from L

and dividing each entry of L by its Frobenius norm.
L is initialized either randomly or from the solution of
spectral embedding or Laplacian eigenmaps [1]. The
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(a) Spectral embedding (b) SPE-SGD
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Figure 1: The Enron email network embedded into 2D by spectral embedding (a), and SPE-SGD (b). The
plot on the right shows how many nodes have fewer than x impostors. We see that embedding this network
into 2D yields many impostors; however on average nodes in the SPE embedding have many fewer impostors
than nodes in the spectral embedding.

algorithm terminates when |Lt+1 Lt| < ε, where ε

is an input parameter.
In practice, instead of optimizing over a single ran-

domly chosen triplet at each iteration, we find it use-
ful to randomly select a node at each iteration, and
use the gradient computed from all impostor triplets,
since it is only for these triplets that a gradient step
is taken. As shown in Figure 2 an impostor is a node
which violates the neighborhood of another node. For
each impostor triplet {i, j, k}, i is the randomly cho-
sen target node, j is the furthest connected neighbor
of i and k is a node unconnected to i but currently
closer than j.

Figure 2: The red nodes are identified as impostors to
the neighborhood of the center node (dark blue), be-
cause the impostors (red) are closer than the furthest
of the connected nodes (light blue).

3 Experiments

In Figure 1 we see two embeddings of the Enron email
network [2]. Each of the 36692 nodes in the net-
work represents a person, and there exist edges be-
tween each pair of people who have communicated
via email. Because of the high degree of many of the
nodes in the network, it is likely impossible to find
a 2D embedding which preserves topology exactly –
meaning all nodes have zero impostors. The network
may require a higher dimensional embedding. How-
ever we see that the 2D visualization produced by
SPE has far fewer impostors than that produced by
spectral embedding, and thus provides a more accu-
rate visualization.
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Abstract

The need to rank items based on user input arises in many practical applications such as
elections, betting, and recommendation systems. Consider, for example, the popular movie
rental website, Netflix, which is faced with the challenge of having to recommend movies to
users based on partial historical information about their preferences. A popular approach to this
challenge is to ask users to provide explicit numerical ratings of the movies they have watched.
The ratings are then used to obtain the desired ranking. The main appeal of the rating-based
methods is that they are fairly easy to implement. However, the rating scale and the individual
ratings are often arbitrary and may not be consistent from one user to another. Furthermore,
each user rates only few movies, which could lead to the "loss" of valuable information. A
more natural alternative to numerical ratings relies on asking users to compare pairs of movies.
These comparisons provide an "absolute" indicator of the user’s preference, but it is often hard
to combine comparisons from different users to obtain a consistent ranking.

In this work, we provide a general and tractable framework for utilizing comparison data for
the purpose of ranking. In this framework, comparisons are treated as partial samples from a
distribution over permutations. Using the Principle of Maximum Entropy, we devise a concise
parameterization of one such distribution using only O(n2) parameters, where n is the number
of items in question. We also propose a distributed algorithm for estimating the parameters, and
producing rankings over the items in question. Finally, we provide results from an experiment
where our aglorithm was useds as advisory component in the review process for the The ACM
International Symposium on Mobile Ad Hoc Networking and Computing.

1. Problem Satement and Main Results

We consider a set N = {1, ..., n} of n items. We represent the preferences of each user by a
permutation σ of the elements of N . We denote the position of item i in the user’s preference by
σ(i), and say that the user prefers item i to item j iff σ(i) > σ(j). In our model, user preferences
come from a distribution over permutations µ : Sn → [0, 1], where Sn is the set of all permutations
of n elements.

For the simplicity of presentation, suppose that the available data for each pair of distinct items
consists of the fraction of users who prefer item i to item j, denoted by wij . Suppose also that
each wij is the marginal of some underlying distribution (i.e. wij = P[σ(i) > σ(j)]. Then the set
of distributions consistent with our data, can be defined using the following constraints:

∑

σ∈Sn

µσI{σ(i)>σ(j)} = wij , ∀i, j (1a)

µσ ≥ 0, ∀σ ∈ Sn (1b)

where I{E} denotes the indicator variable for event E. It is easy to see that there are multiple
distributions that satisfy these constraints, and one has to come up with a criterion to choose among
these distributions. Ideally, the selected distribution should utilize the information provided by the
data, without imposing any additional structure on unseen data. One criterion that achieves this
objective is that of Maximum Entropy, where we choose a distribution that fits the data while
maximizing the entropy. Using the method of Lagrange Multipliers, we obtain a distribution of the
form:

1 
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µσ ∝ exp
(

∑

i,j∈N

λijI{σ(i)>σ(j)}

)

(2)

One appealing property of this distribution is that it can be fully characterizes using only O(n2)
paremeters that can be estimated by solving the following dual problem:

max
λ

∑

i,j

λijwij −
∑

σ∈Sn

exp
(

∑

i,j

λijI{σ(i)>σ(j)}

)

(3)

The second term in the objective above, known as the partition function, involves summing
over an exponential (n!) space, and is usually hard to compute exactly. To address this issue, we
propose a distributed algorithm that uses MCMC techniques to compute the partition function
and other marginal. In our algorithm, the parameters λ are maintained and updated separately,
and the marginals corresponding to each pair of items are computed approximately when needed.
Furthermore, the estimates produced by the algorithm are asymptotically consistent, and converge
to the true model, under the assumption that 0 < wij < 1 for all distinct items i, j.

Once the distribution µ is obtained, our algorithm can be used to estimate different marginals
for the purpose of ranking. For example, we could obtain a ranking by assigning each item a score
that reflects its average position according to our distribution. For example, the score for item i

could be:

Eµ[e
θ(n−σ(i))] =

n
∑

r=1

eθ(n−r)P [σ(i) = r] (4)

where the parameter θ > 0 could be used to adjust the importance of the top part of the
ranking.

2. Evaluation

We used our algorithm and ranking scheme, outlined in the previous section, as an advisory com-
ponent to the technical committee for The ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2011). In addition to the scores traditionally provided by
the reviewers, we asked reviewers to provide pairwise comparisons of their papers. We then used
our algorithm to rank the papers, and the result were compared with the final decision made by the
committee. Despite the limited amount of available data, the top 20 papers recommended by our
scheme contained 9 of the 20 accepted papers, and the remaining 11 received high rankings. This
is surprising, given the fact that the data used was fairly "thin", due to the high paper-to-reviewer
ration. Moreover, the final decision was made by a committee over the course of a two day meeting
held at MIT, and our algorithm had no access to any information from meeting.
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Abstract. In real networks, communities may overlap. That is the problem of the cover
which allows the nodes to be shared among communities. Currently, the most accepted
and widely used measurement to evaluate the quality of the community structure is the
modularity proposed by Newman and Girvan. Although it fails to evaluate the quality
of the covers, it is suitable to uncover the fuzzy community structure which allows the
nodes to have memberships with more than one group. Reichardt et al. [1] has proposed
an energy landscape survey method, which uncovered the fuzzy community structure
with a co-appearance matrix by collecting the spin configuration with the minima local
energy. We use a similar method to uncover the fuzzy community structure with a co-
appearance matrix. Here, the co-appearance matrix whose element shows the probability
of nodes in the same community is calculated by running Louvain algorithm [2] several
times. With the co-appearance matrix, the membership of nodes is revealed by the high
co-appearance in off-diagonal. Comparing to the method proposed by Reichardt et al.,
the Louvain algorithm is more efficient than the simple Monte-Carlo heat-bath algorithm,
and setting random orders of nodes is much simpler than tuning the temperature.

We also propose a new extension of the modularity to evaluate the quality of the covers.
Combined with the Hamiltonian in forms of the cohesion and the adhesion, the quality of
the cover is derived from the union of the communities with overlapping nodes, which is,

Qov =
1

2M

∑

i 6=j

(

Aij −
kikj

2M

) |di ∩ dj|
|di ∪ dj|

. (1)

where di, dj denote the memberships of i and j in the graph, di, dj ⊆ {C1, . . . , Cq}.
Since the overlapping nodes make the classification of nodes into the partition undecidable,
a strict overlapping community definition is proposed in [3]. That is, if removing the node
group l from the community Cα to the community Cβ will not degenerate the quality of
the total graph, we consider the node group l to be the overlapping group between Cα and
Cβ. Furthermore, the quality of the cover should not be lower than the partition. We can
find the cover by modularity optimization. For the efficiency of the partition detection
algorithm, it is a good choice to find the cover by adjusting the fuzzing node groups based
on the partition by improving the quality of the community structure. In this way, we
can find the cover S with a good quality: Qov(P) ≤ Qov(S).
Furthermore, benefited from the hierarchical structure of Louvain algorithm, the hierar-
chal structure with the fuzzy community structure can be mined, too. Although it seems
that the hierarchical structure can be provided by tuning the resolution parameter γ [4],
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more studies have shown the relation between the stability and the parameter γ. There-
fore, it is meaningful to study the relationship between the fuzzing nodes and γ. Both of
them are related with the stability of communities.

Having applied our method on benchmark graphs, the results have demonstrated the
availability of our method in fuzzy community detection, the overlapping community
detection, the hierarchical structure detection and the community structure with the dif-
ferent resolution parameters γ. The results show that the fuzzing node groups which cause
the instability of communities can reveal how small clusters are nested in large clusters
for the modularity resolution limitation, with which the size of the community is in the
order of

√
m, where m is the total number of links of the graph. The hierarchical orga-

nization with fuzzing nodes is suitable to study the stability of communities at different
levels. With different resolution parameters γ, we observe that the fuzzing nodes join the
small clusters into large clusters by minimizing the parameter γ. Studies on a geographi-
cal co-citation network whose points denote the laboratories in different regions and the
edges denote the number of articles cooperated between laboratories, are very interesting.
Results have shown that the laboratories with few articles may degenerate the robust of
the communities. A good example is the community composed of the laboratories in UK.
Its instability is related with the laboratories located in few population regions. And the
laboratories in Belgium having good collaborations with its neighbor countries are also
shown in the overlapping community structure. For the feasibility of our method, we hope
it is helpful in community detection.
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1 Introduction

Complex networks exhibit a mesoscopic level of organiza-
tion, called communities [NG04]. A community is a con-
nected sub-graph whose nodes are much linked with one each
other that with nodes out-side the sub-graph. Nodes in a
community, are generally supposed to share common prop-
erties or play similar roles within the network. This sug-
gests that we can gain much insight into the complex net-
worked systems by discovering and examining their under-
laying communities. A great number of algorithms have been
proposed for detecting the community structure in complex
networks. Examples are [BGLL08; NG04; SZ10; BGMI05;
ZW07; DWWW08; LM09; Mur10]. Different algorithms ap-
ply different techniques. However a major trend of these al-
gorithms are modularity guided approaches [NG04]. Amaz-
ingly, maximizing the modularity seems not to be a guarantee
to detect real communities in a network. For example, con-
sidering the now well known Zachary’s Karate club dataset
[Zac77] the modularity of the partition composed of the two
real communities forming the club is only 0.37. The Louvain
approach, which is one of the top community detection algo-
rithms in the state of the art [BGLL08], computes a different
partition with a higher modularity of 0.41. However, com-
pared to the real partition the obtained purity is rather low
(0.64). This suggests that modularity might not be the right
criteria to optimize.

We propose here a new modularity independent algorithm
for community detection that is inspired from human commu-
nity formation. A community is led by a set of core leaders
followed by other community members. A single node can
belong to different communities at once allowing to compute
overlapping communities. A leader may also follow another
leaders of another communities. The proposed algorithm is
structured into two mains steps : identifying nodes in the net-
work that are playing the role of communities’ leaders, then
assigning other nodes to leaders in order to construct the com-
munities. Our algorithm computes automatically the number
of communities to identify. Moreover it identifies overlap-
ping communities rather than disjoint ones as most of existing
algorithms do.The idea of constructing communities around
leader nodes has been recently applied in two independent
and different algorithms described in [KCZ10] and [SZ10].
Both cited algorithms are designed to compute a network par-
tition rather than overlapping communities. In addition the

[KCZ10] requires the number of communities to identify as
an input. Next we sketch briefly the outlines of our proposal
and show first results obtained by applying the approach to
some small benchmark networks.

2 Leaders-centered community detection

algorithm

The basic idea underlaying the proposed algorithm is that a
community is composed of two types of nodes: Leaders and
Followers. Roughly speaking, leaders form a subset of nodes
(eventually one node) whose removal form the network im-
plies community collapse. Algorithm 1 sketches the general
outlines of the proposed approach. The algorithm functions
as follows. First we extract from the set of the graph nodes
a list L of nodes that are likely to be leaders of communi-
ties. This is the role of the isLeader() function (line 3). A
leader is a node that has greater centrality that its neighbors,
whatever the applied centrality is.

Algorithm 1 Leader-based community detection algorithm

Require: G =< V,E > a connected graph
1: L ← ∅ {set of leaders}
2: for v ∈ V do
3: if isLeader(v) then
4: L ← L ∪ {v}
5: end if
6: end for
7: C ← computeComumunitiesLeader(L)
8: for v ∈ V do
9: for c ∈ C do

10: M [v, c]← membership(v, c) {see equation 1}
11: end for
12: P [v] = sortAndRank(M [v])
13: end for
14: for v ∈ V do
15: P ∗[v]← rankAggregatex∈{v}∩ΓG(v)P[x]
16: /* assigning v to communities */
17: for c ∈ P ∗[v] do
18: if |M [v, c]−M [v, P ∗[0]]| ≤ ε then
19: COM(c)← COM(c) ∪ {v}
20: end if
21: end for
22: end for

23: return C
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In the current implementation, a leader is defined as a node
whose degree centrality is greater or equal to σ ∈ [0, 1] per-
cent of its neighbors. This allows to recover leaders con-
nected to other leaders. Nodes inL are then grouped into sets;
each composing a set of leaders of a community. This is the
role of the function computeComumunitiesLeader() (line
7). The length of the list of sets C is the number of communi-
ties in the network. Two leader nodes are grouped in the same
community if the ratio of common neighbors to the total num-
ber of neighbors is above a given threshold δ ∈ [0, 1]. Next,
each node (leaders and followers) computes its membership
degree to each of the identified communities. This is done by
applying the membership() function (line 10). Again differ-
ent implementations can be proposed for this function. In the
current version, the membership degree of node v to a com-
munity c is given by the inverse of the minimal shortest path
that links v to one of the leaders of c.

membership(v, c) =
1

(minx∈COM(c)SPath(v, x)) + 1
(1)

Notice that for a community c, the membership of all its lead-
ers is equal to 1. The membership vector of each node v is
sorted in decreasing order in order to compute ranked list of
membership preference vector Pv (line 12). Then, for each
node we compute a permutation of Pv in a way the aggregates
preference vectors of all its direct neighbors (line 15). Differ-
ent social choice algorithms can then be applied to compute
P ∗

v
[CELM07]. In the current implementation of the algo-

rithm we apply the classical Borda approach [Bor81]. Lastly,
a node v is assigned to top ranked communities in P ∗

v
for

which membership degree is at most within ε ∈ [0, 1] from
the membership degree of the first ranked community. ε in
another system parameter. COM(v ∈ V ) returns the com-
munity in C led by v if it exists, ∅ otherwise (line 19).

3 Experimental results

We apply our approach to two well known small benchmark
networks for which ground truth community decompositions
are available: Zachary karate club [Zac77] and the sawmill
strike movement dataset 1. The first network is composed
of 34 nodes divided into two communities while the sec-
ond is composed of 36 nodes linked with 63 edges and de-
composed into three communities. While both datasets are
very small compared to target networks of our approach, they
have the advantage of offering a ground truth decomposition
into communities and have been used by different community
identification approaches. We compare performances of our
approach with basic community detection algorithms: The
Newman-Girvan algorithm [NG04] and the Louvain algo-
rithm [BGLL08]. Input parameter of our approach are mainly
the three thresholds used in the three steps described earlier.
In this experimentation we have fixed the ε parameter to 0
hence assigning a node to different communities only if the
node has an equal membership degree. This choice is mainly
motivated by the fact we compare our approach with algo-
rithms detecting disjoint communities. The σ threshold used

1available on http://vlado.fmf.uni-
lj.si/pub/networks/pajek/ensa/strik

for identifying leader nodes has been varied from 0.7 to 1.
Lastly the δ threshold used in grouping leaders into groups is
fixed to 0.5. Table 1 gives obtained results on both datasets
using classical clustering quality metrics: purity and the ARI
index [YR01]. These preliminary results shows clearly that
the modularity metric does not correspond to the best decom-
position into communities as measured by both purity and
adjusted rand index. For instance, the Louvain method ob-
tain always the best modularity (even better than the modu-
larity of the ground truth decomposition) however it is ranked
last according to purity. Best results are obtained by our ap-
proach for high values of σ. This suggests that heuristics we
propose is able to detect precisely real leaders in these social
networks.

4 Conclusion
In this work we have proposed a new approach for commu-
nity detection in complex networks based on identifying a set
of community leaders then assigning nodes to these leaders.
This approach presents the advantage of applying node neigh-
borhood bounded computation steps in order to conduct the
three of steps of leader detecting, community number identi-
fication and node assignments to communities. This allows to
consider developing a full distributed version of the algorithm
that can handle very large scale networks. Results obtained
on small benchmark social network argue for the capacity of
the approach to detect real communities.
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Table 1: Comparison of performances of different community detection algorithms
Zacahary dataset Strike dataset

Approach # Communities Purity ARI Modularity # Communities Purity ARI Modularity
Newman 2 0.97 0.87 0.36 3 0.90 0.82 0.35
Louvain 4 0.64 0.83 0.41 5 0.68 0.80 0.60

Our approach σ = 0.7 3 0.74 0.59 0.23 4 0.68 0.5 0.20
Our approach σ = 0.8 4 0.95 0.93 0.30 3 1.0 0.60 0.45
Our approach σ = 0.9 2 1.0 1.0 0.37 3 1.0 1.0 0.55
Our approach σ = 1.0 2 1.0 1.0 0.37 3 1.0 1.0 0.55
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Estimation of Dynamic Social Network Structure
via Online Convex Programming

Maxim Raginsky, Corinne Horn, and Rebecca Willett

I. INTRODUCTION

Consider a dynamic social network composed of p agents,
where the designation “dynamic” means that the network
topology or, more broadly, the influence of each agent on
the other agents, may evolve with time. We collect sequential
observations of the agents’ actions, and would like to use
them to infer something in real time about the structure of
the network. We assume that each agent has only two actions
available to him. This assumption is valid in many contexts,
e.g., voting, communication, or meeting patterns.

From the modeling point of view, both the topology of
the network and the strengths of the agents’ influence can
be encoded in a time-varying sparse binary pairwise Markov
random field (also known in statistical physics as the Ising
model). Models of this type have been popular in statistical
analysis of social networks [1], [2]. Thus, our goal is to
infer the parameters of such a model given the observed
binary actions of the agents. The offline (batch) version of this
problem was recently treated by Banerjee et al. [3], Ravikumar
et al. [4], Kolar and Xing [5], and Höfling and Tibshirani [6].
As noted in [3] and [4], sparsity regularization can play a
critical role in accurately estimating network structure from a
relatively limited amount of data; this effect has been noted
both empirically and theoretically in an analysis of sample
complexity of different methods.

By contrast, we work in the online setting, i.e., when the
observations are available sequentially, one at a time. More-
over, even if all the observations are available at once, online
algorithms often offer a computationally feasible and robust
alternative to batch inference [7]. A notable feature of our
approach is that we do not assume that the dynamical evolution
of the agents’ actions is, in fact, described by a time-varying
Ising model; nor do we assume that sequential observations
are conditionally independent. Rather, we treat the Ising model
as a descriptive tool, which allows for easy interpretation of
the observed network behavior in terms of a time-varying
weighted graph, where the presence of a nonzero weight on an
edge connecting a particular pair of agents indicates mutual
influence, while the sign of the weight indicates the nature
of the correlation between the agents’ actions (positive or
negative). Our theoretical results show that we can use the
sequential observations of the agents’ actions to construct a
sequence of network structure estimates that is nearly as good

The authors are with the Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC 27708, USA. E-mail: {m.raginsky, ceh23,
willett}@duke.edu.

as if all the observations had been available at once.
Moreover, if the observations do happen to be generated

according to a time-varying Ising model, then we can combine
the online estimates to form a “final” estimate and bound
its generalization error in terms of both (a) the choice of
regularization and (b) the penalty due to sequential, rather than
batch, processing of observations. Recently, there has been in-
creased interest in the role of regularization, especially sparsity
regularization, in the context of online convex programming.
In particular, Xiao [8], Langford et al. [9] and Duchi et al. [10]
have demonstrated empirically that treating a regularization
term separately in an online algorithm can help ensure sparse
estimates at each time step. However, this line of research does
not show how the choice of regularizer impacts generalization
performance, despite its obvious importance empirically. The
work described in this abstract helps close that gap.

II. ISING MODELS FOR NETWORK STRUCTURE

Let V = {1, . . . , p} denote the set of agents making up the
network. We assume that the number of agents p is known,
and that no new agents enter the network throughout the
observation period. Let us first consider a single time instant.
For each agent α ∈ V , let xα ∈ {−1,+1} denote the action of
that agent. Then the Ising model for the network configuration
x = (xα : α ∈ V) is given by the probability distribution

Pθ(x) =
1

Z(θ)
exp

 ∑
α,β∈V

θαβxαxβ

 . (2.1)

The p× p matrix θ = (θαβ)α,β∈V is symmetric (θαβ = θβα);
if θαβ = 0 for some α and β, then we say that agent α has
no influence on agent β and vice versa; on the other hand,
if θαβ 6= 0, then there is a correlation between the actions
xα and xβ , which is positive or negative depending on the
sign of θαβ . The normalization constant Z(θ) is known as the
partition function.

The basic problem is as follows: Suppose we observe T
“snapshots” of the network in the form xt = (xtα : α ∈ V) ∈
{−1,+1}V , t = 1, . . . , T . We would like to come up with a
corresponding sequence θ̂t ∈ Rp×p, t = 1, . . . , T , such that
the product distribution Pbθ1 ⊗Pbθ2 ⊗ . . .⊗PbθT provides a good
“fit” to the observed data x1:T = (x1, . . . , xT ). Moreover, we
would like the estimates θ̂t to be sparse, i.e., only a small
number of θ̂tαβ should be nonzero. This sparsity requirement
meshes well with observational studies of certain decision-
making phenomena in social networks, e.g., in the voting
patterns of legislators.
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The problem of inferring the network parameters θ of the
Ising model (2.1) is, in general, intractable due to the presence
of the partition function Z(θ) [11]. To circumvent the need
for computing (or even approximating) the partition functions
[4], [5], several authors, starting with Ravikumar et al. [4],
have exploited the observation that, for each agent α ∈ V , the
conditional distribution xα given the actions of the remaining
agents (denoted here by x\α) is

Pθ(xα|x\α) =
exp

(
2xα

∑
β∈V\α θαβxβ

)
exp

(
2xα

∑
β∈V\α θαβxβ

)
+ 1

where V\α denotes the set of all vertices excluding α. The
negative log likelihood − log Pθ(xα|x\α) is a convex function
of θ; thus, the vector of weights θ can be found by minimizing,
separately for each vertex α, the `1-regularized negative log
likelihood. The final graph estimate is then assembled from
the individual vertex estimates. Alternatively, as discussed
by Höfling and Tibshirani [6], the individual vertex terms
− log Pθ(xα|x\α) can be combined into a pseudolikelihood

`(θ;x) 4= −
∑
α∈V

log Pθ(xα|x\α).

This avoids the need for reconciling the individual vertex
estimates. Although there is no proof of consistency in [6],
the empirical results are promising, and the method of [6]
easily lends itself to an online implementation.

III. OUR APPROACH AND SUMMARY OF RESULTS

We recap our problem: given sequentially arriving co-
occurrence observations x1:T = (x1, x2, . . . , xT ), construct
a sequence of sparse network graph estimates θ̂1:T , where
θ̂t may depend only on the currently available observations
x1:t−1 = (x1, . . . , xt−1). Since we do not assume anything
about the dynamics of the agents’ behavior, we take the regret
minimization point of view: Given a regularization param-
eter τ > 0, we consider the regularized pseudo-likelihood
`τ (θ;x) = `(θ;x) + τ‖θ‖1, and our goal is to ensure that
the regret

RT
4=

T∑
t=1

`τ (θ̂t;xt)− inf
θ∈Θ

T∑
t=1

`τ (θ;xt)

is as small as possible. Here, Θ is a convex feasible set of
graphical model weights (e.g., an `1 ball). The big picture here
is that the proposed online estimation scheme should compete
favorably against the best `1-regularized pseudolikelihood
estimator that has access to the entire data record x1:T . For
the problem of tracking a dynamically evolving network, we
can consider a class Θ1:T of time-varying reference models
and define the tracking regret

RT (Θ1:T ) 4=
T∑
t=1

`τ (θ̂t;xt)− inf
θ1:T∈Θ1:T

T∑
t=1

`τ (θt;xt).

The goal in both cases is to ensure that the regret behaves
sublinearly as a function of the record size T . In the stochastic

case, sublinear regret will lead to consistency in the usual sense
[7] — if the best `1-regularized batch estimator is consistent,
then the sequence of outputs of any online algorithm with
sublinear regret can be used to construct a final estimator
which is nearly as good.

In a nutshell, our theoretical results are as follows: If we
compare our causally constructed sequence of estimates θ̂t

to the best single offline estimate θ∗, then we obtain a regret
bound of the form RT = O(

√
T ), where the constants implicit

in the O(·) notation depend on the geometry of the reference
model class Θ and on the regularization constant τ . For
tracking regret, we obtain a bound of the form

RT (Θ1:T ) = O(VT
√
T ),

where

VT
4= sup
θ1:T∈Θ1:T

T∑
t=1

‖θt − θt−1‖

is a natural measure of the complexity of the time-varying
reference class Θ1:T . In other words, we can successfully
track a dynamically changing network structure, provided the
changes are sufficiently infrequent and/or smooth.

We also use the above results on the regret to establish gen-
eralization error bounds, which explicitly account for the role
of sparsity regularization. Intuitively, if sparsity regularization
gives strong performance guarantees in a batch setting, then
applying the same regularization in the online setting should
yield similar gains. We prove that this intuition is in fact true.

Finally, we will demonstrate the efficacy of the proposed
approach on a simulated data set generated from a time-
varying binary Markov random field, as well as on the US
Senate voting records.
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 Dynamic network centralities and saltatoric information 
transmission: lessons of biological networks   

Peter Csermely,1,  Eszter Hazai,2 Huba J. M. Kiss, 1 István A. Kovács,1,3 Ágoston 
Mihalik,1 Robin Palotai,1 Gábor I. Simkó,1,4 Kristóf Z. Szalay,1 Máté Szalay-BekC,1

and Shijun Wang5

In the last decade several analogies have been uncovered between the topology and dynamics 

of complex social and biological networks [1]. Our studies on community-based, 

perturbation-based and spatial game-based centralities showed that inter-modular nodes and 

links play a key role in information transmission, and led us to suggest a novel information 

transmission mechanism of complex networks. 

Moduland is a novel method family to detect pervasively overlapping communities ([2], 

www.linkgroup.hu/modules.php). First, local influence zones of each links (or nodes) are 

defined. Next, a community landscape is constructed, where the horizontal plane corresponds 

to a 2D visualization of the network, while the vertical scale is the sum of the influence zones 

containing the given link (or node). The value of the vertical scale is called as community 

centrality, since it characterizes the influence reaching the given link or node from the whole 

network. The overlapping modules are the ‘hills’ of the community landscape. The method 

also constructs a hierarchical coarse-grained representation of the network, where the nodes 

correspond to the modules of the original network, and the link-weights denote the overlaps of 

the modules. Our studies on changes of protein-protein interaction networks during abrupt 

changes of the environment (stress) [3] showed that the overlap of modules decreases and 

modules became partially disintegrated as an initial response to stress. The stress-induced 

decrease of inter-modular connections is beneficial, since it A.) allows a better focusing on 

vital functions, and thus spares resources; B.) localizes damage (e.g. of free radicals) to the 

affected modules; C.) reduces the propagation of noise; D.) allows a larger ‘degree of 

freedom’ of the individual modules to explore different adaptation strategies; and E.) helps 

the ‘mediation of inter-modular conflicts’ during a period of violent intra-modular changes 

Modular overlaps emerge as keys of adaptive processes in cells – and in all complex systems 

including social networks. Changes in community centrality identified key players of the 

response to the cellular challenge. 

Turbine ([4] www.linkgroup.hu/Turbine.php) is a widely applicable, Matlab-compatible 

algorithm, to assess the propagation of perturbations in any cellular networks. In these studies 

intermodular nodes emerged as highly efficient transmitters of perturbations. 

Based on our earlier studies on spatial games (where agents playing repeated rounds of social 

dilemma-type games, like the prisoner’s dilemma game, can play only with their neighbors), 

we constructed NetworGame ([5] www.linkgroup.hu/NetworGame.php), which is a versatile 

1 Department of Medical Chemistry, Semmelweis University, 37-47 T:zoltó Street, Budapest, H-1094, Hungary.
2Virtua Drug Co., Budapest, Hungary. 3Department of Physics, Loránd Eötvös University, Pázmány P. s. 1/A, H-

1117 Budapest, Hungary and Research Institute for Solid State Physics and Optics, H-1525 Budapest, P. O. Box 

49, Hungary. 4Vanderbilt University, Nashville TN, USA. 5Clinical Center, National Institutes of Health, 

Bethesda MD, USA. 
 Presenter and corresponding author. E-mail, csermely@eok.sote.hu; E-mail addresses of other authors: EH: 

eszter.hazai@virtuadrug.com; HJMK: kisshuba@googlemail.com; IAK: kovacs.pisti@gmail.com; AM: 

anaston@gmail.com; RP: palotai.robin@gmail.com; GIS: gsimko@gmail.com; KZS: kris@sch.bme.hu; MS: 

szalay.beko.mate@gmail.com; SW: wangshi@cc.nih.gov.
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 program package to model any types of two-agent games (with 2 to 5 strategies) in any real 

world, or model networks using any types of strategy update rules, update dynamics and 

starting strategies. The NetworGame program interprets game centrality as the ability of a 

networked agent (or a link of two agents) with a single initial defective strategy to change an 

overall initial starting cooperation to defection (and vice versa: a cooperative strategy of a 

linked node-pair/triangle changing overall defection to cooperation). Spatial games can also 

be rationalized in networks of non-conscious agents, such as amino acids, or proteins [6]. Our 

game centrality measures correctly identified the major decision makers of social cooperation 

in benchmark networks, such as the Zachary karate club network or Michael’s strike network, 

and pinpointed key ‘actors’ determining the cooperation of biological networks. 

Recently we summarized the features of particularly dynamic central elements, and called 

them as ‘creative elements’ [7]. These elements bridge Ronald S. Burt’s ‘structural holes’, 

and provide a key subset of Mark Granovetter’s ‘weak links’. Active centers and binding sites 

of proteins often occupy such a position in protein structure networks. As the complexity of 

the system increases, the mobility of creative elements expands, and covers more and more 

the entire network [7].

Based on our earlier studies demonstrating the partial disassembly of networks as a response 

to stress [3], recently we proposed that information transmission of ‘cumulus-type’ networks 

(which have a limited overlap between their modules and a more compact, rigid module 

structure) can be described by an ‘energy transfer’ mechanism. In ‘stratus-type’ networks 

(having a significant overlap between their modules) the information transfer utilizes multiple 

trajectories. These signaling trajectories converge at modular boundaries. Bridging nodes may 

have a decisive role in the regulation of signal transmission from one network module to 

another [8]. Such inter-modular nodes, called as cross-talks in cellular information transfer 

networks, are key players of biological information transmission [9]. 

Authors would like to thank members of the LINK-group (www.linkgroup.hu) for helpful suggestions. Work in 

the authors’ laboratory was supported by research grants from the Hungarian National Science Foundation 

(OTKA-K69105 and OTKA-K83314), from the EU (FP6-016003). 
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Converging an Overlay Network to a

Gradient Topology

H̊akan Terelius, Guodong Shi, Jim Dowling, Amir Payberah,

Ather Gattami and Karl Henrik Johansson∗†

Abstract

The paper investigates the topology convergence problem for the gossip-based gradient

overlay network. In an overlay network where each node has a local utility value, a gradient

overlay network is characterized by the properties that each node has a set of neighbors

with the same utility and a set of neighbors containing higher utilities, such that paths of

increasing utilities emerge in the network topology. We show how a gossip-based overlay

network, built using a preference function that samples random nodes using a peer sampling

service, converges to a complete gradient structure. A sufficient and necessary condition is

proposed on the sampling probability function for the considered network converging to a

gradient structure with probability 1. We illustrate through simulations how the gradient

overlay network can be used to build a more efficient live-streaming peer-to-peer system than

one built using random sampling.

Keywords: Overlay networks; topology convergence; gossiping; gradient topology
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A Model of Strategic Behavior in Networks of Influence

Mohammad T. Irfan and Luis E. Ortiz

Department of Computer Science
Stony Brook University
Stony Brook, NY 11794

{mtirfan,leortiz}@cs.sunysb.edu

We propose influence games, a new class of graphical games, as a model of the behavior of
large but finite networked populations. Grounded in non-cooperative game theory, we introduce a
new approach to the study of influence in networks that captures the strategic aspects of complex
interactions in the network. We study computational problems on influence games, including the
identification of the most influential nodes. We characterize the computational complexity of various
problems in influence games, propose several heuristics for the hard cases, and design approximation
algorithms, with provable guarantees, for the influential nodes problem based on a connection we
establish to the minimum hitting set problem [4].

To date, the study of influence in networks has concentrated mostly on analyzing the diffusion (or
“contagion”) processes induced by the influences in the network [1, 6, 7]. The notion of “influential
nodes” considered in this paper is different, and is aimed at complementing the traditional line of
work with a new game-theoretic perspective. Inspired by threshold models in social science [2], we
define influence games as a class of graphical games [5] where each player corresponds to a node in
a directed graph encoding“influence factors.” The set of actions (or pure strategies) of each player
is {1,−1}, for “adopt” or “not-adopt” a behavior, respectively. Each player also has an influence
function fi mapping each joint-action of the player’s parents in the game graph to a real number,
and a real-valued tolerance threshold bi. Each player i’s payoff function is defined such that, given a
joint-action xPa(i) of player i’s parents Pa(i) in the graph, player i’s best-response is 1 (respectively,
−1) if fi(xPa(i)) exceeds (is below) bi; and indifferent if fi(xPa(i)) = bi. In the special class of linear
influence games (LIGs), each fi is a weighted sum of xPa(i).

We define a set S of players in a game as most influential, with respect to a specified pure strategy
Nash equilibrium (PSNE) x∗, if the players in S to choosing actions according to x∗ enforces all
others to also choose actions according to x∗. Said differently, the players in S are collectively
so influential that they are able to restrict the choice of actions of every other player in a stable
solution to a unique one. We further extend this definition by allowing for a preference function
over all possible sets of the most influential nodes (e.g., a minimum-cardinality set). Departing
from the contagion model and rather concentrating on the PSNE of the influence game, we capture
significant, basic, and core strategic aspects of complex interaction in networks that naturally appear
in many real-world problems (e.g., determining the most influential Senators in Congress).

We study two fundamental algorithmic questions in this setting—computing PSNE of influence
games and finding the most influential set of nodes. We show that various versions of these problems
(e.g., existence of a PSNE, uniqueness of PSNE, counting the number of PSNE even in star networks,
etc.) are intractable, unless P = NP. Nevertheless, on the positive side, we show how to compute
a PSNE of special types of influence games, such as the ones with non-negative influence factors
and the ones having tree structures, in polynomial time. Furthermore, given the set of all PSNE
H, we give a (1 + log |H|)-factor approximation algorithm for the most influential nodes selection
problem. We also illustrate the whole computational scheme empirically, using random influence
games and influence games learned from the US Congress voting records using machine learning
techniques [3]. 
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Optimal Marketing and Pricing over Social Networks

Vahab S. Mirrokni
Google Research, New York

mirrokni@google.com

ABSTRACT

We discuss the use of social networks in implementing viral
marketing strategies. While infuence maximization has been
studied in this context, we study revenue maximization, ar-
guably, a more natural objective. In our model, a buyer’s
decision to buy an item is influenced by the set of other
buyers that own the item and the price at which the item is
offered. We focus on algorithmic question of finding revenue
maximizing marketing strategies and study the problem in
two main cases with and without price discrimination.

1. INTRODUCTION

Social networks pervade our lives and significantly influ-
ence the decisions we make. Our decisions to buy a cell
phone, go to college, or smoke a cigarette are fundamen-
tally affected by the decisions of our friends. Traditionally,
social scientists have studied the effects of social networks
on decision-making in a very abstract sense or in explicit
small-scale settings. However, the proliferation of social-
networks on the Internet has allowed companies to collect
information about social-network users and their social re-
lationships, yielding explicit information regarding connec-
tions in massive social networks. As a result, it has become
increasingly relevant to understand how the social network
structure affects the choices of the society it describes, and
how this knowledge can be leveraged to monetize these net-
works in an Internet setting.

In this talk, our main focus will be on how to leverage net-
work structure to promote a product and/or maximize rev-
enue. Consider a company interested in promoting a prod-
uct. As one agent adopts the product, this impacts other
potential adopters. Such an effect is called an externality.
Externalities that induce further adoption of the product are
called positive externalities. These externalities significantly
influence the diffusion of the product in the social network
and the revenue that can be extracted during this diffusion
process.

A far-sighted seller can take advantage of the existence of
positive externalities to increase its revenue. For instance,
in order to influence many buyers to buy the good, the seller
could initially offer some popular buyers the good for free.
Indeed such selling techniques are already employed in prac-
tice. TiVo, a company which makes digital video recorders,
initially gave away its digital video recorder for free to a se-
lect few video enthusiasts [6]. Such promotions may be an

Copyright is held by the author/owner(s).
.

effective way to create a buzz about the product.
The basic idea of giving away the item for free can be

generalized in a couple of ways: First, rather than offering
the item for free, sellers could offer discounts. There is a
trade-off: larger discounts decrease the revenue earned from
the transaction while increasing the likelihood of a sale and
the influence on future buyers. How large should the dis-
counts be? Second, the sequence in which sales happen has
an impact on the effect of externalities. Influence is gen-
erally not symmetric. Often popular, well-connected users
wield more influence. Clearly, we would like sales that have
the potential to cause further sales to occur earlier. In what
sequence should the selling happen? The goal of this paper
is to explore marketing strategies that optimize a seller’s
revenue.

We investigate the marketing and pricing problems over
social networks in three different parts: In the first part, we
allow price discrimination and design pricing pricing strate-
gies that can target special social network users with specific
offers [4]. In the second part, we discuss optimal pricing
strategies in settings without price discrimination, and by
using publicly known posted pricing [1, 2].

We investigate marketing strategies that maximize rev-
enue from the sale of digital goods. In this setting, a buyer’s
decision to buy an item depends on other buyers owning
the item and the price offered to the buyer; the value of
the buyer for the good is defined by a set function which
models the influence from other set of buyers on this buyer.
We assume that though the seller does not know the value
functions, but instead has distributional information about
them. In general, smaller prices increase the probability of
sale.
Marketing with Price Discrimination. In this part,
we discuss optimal marketing strategies and discuss results
from the following paper:

J. Hartline, V. S. Mirrokni, M. Sundararajan. Optimal
Marketing Strategies over Social Networks. The World Wide
Web Conference (WWW), 2008.

V. S. Mirrokni, S. Roch, M. Sundararajan. Optimal Posted-
Price Marketing with Influence Propagation over Social Net-
works. Manuscript.

In the first paper, the seller considers buyers in some se-
quence and offers each buyer a price. When the buyer ac-
cepts the offer, the seller earns the price of the item as the
revenue. As a result, a marketing strategy has two elements:
the sequence in which we offer the item to buyers, and the
prices that we offer. In general it is advantageous to get
influential buyers to buy the item early in the sequence; it 
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even makes sense to offer such buyers smaller prices to get
them to buy the item. This paper first gives a polynomial-
time algorithm for a symmetric setting, and then shows that
the optimal marketing strategy is NP-Hard in the general
settings. In order to design approximation algorithms1 for
the problem, this paper identifies a simple marketing strat-
egy, called the influence-and-exploit strategy: In the initial
influence step, motivated by the the form of the optimal
strategy in the symmetric case, the seller starts by giving
the item away for free to a specifically chosen set of buyers.
In the exploit step, the seller visits the remaining buyers in
a random sequence and attempts to maximize the revenue
that can be extracted from each buyer by offering it the
(myopic) optimal price. About these strategies, the paper
first shows that they achieve a reasonable approximation of
the optimal marketing strategy, which, by a hardness re-
sult is not polynomial-time computable, and it shows that
if the buyer-specific revenue functions are submodular, then
the expected revenue as a function of the set of buyers who
get the item for free is also submodular. Therefore, in or-
der to identify the set of buyers to influence, non-monotone
submodular maximization [3] is employed.

The second paper mentioned above studies a set of influ-
ence and pricing setting strategies in which a set of buyers
get the item for free, and then the seller sets a publicly
available price (or a sequence of public prices) for all the
remaining buyers. The problem is to find the right subset of
buyers to influence and then set the right price, to maximize
the total revenue. In certain Bayesian Influence Setting, the
paper gives an algorithm with approixmaiton factor of 40%
combining by dynamic programming and submodular max-
imization [5].
Optimal Pricing without Price Discrimination. In
this part, we study the optimal iterative pricing strategies
in the presence of positive network externalities. In contrast
to the paper discussed in the previous part [4], we study the
pricing problem without price discrimination where the goal
is to maximize revenue by posting a sequence of publicly
available prices. We study the following papers:

H. Akhlaghpour, M. Ghodsi, N. Haghpanah, H. Mahini,
V. S. Mirrokni, and P. Nikzad. Iterative pricing with posi-
tive network externalities. WINE 2010, and

N. Ahmadi, S. Ehsani, M. Ghodsi, N. Haghpanah, N. Im-
morlica, H. Mahini, and V. S. Mirrokni. Optimal equilib-
rium pricing over social networks. WINE 2010.

The first paper studies the Bayesian setting in which there
are some prior knowledge of the probability distribution on
the valuations of buyers. In particular, the paper studies two
iterative pricing models in which a seller iteratively posts a
new price for a digital good (visible to all buyers), and any
interested buyer can buy the item at the posted price. In
one model, re-pricing of the items are only allowed at a lim-
ited rate. In particular, the item can be repriced only after
a long period of time at which no new buyer is interested
in buying the item. For this case, the paper gives an FP-
TAS for the optimal pricing strategy using a dynamic pro-
gramming approach. Furthermore, using this FPTAS, the
paper reports interesting observation about optimal pricing
strategies over preferential attachment networks. In the sec-
ond model, the paper shows that the revenue maximization
problem is inapproximable even for simple deterministic val-

1An algorithm is a c-approximation if its revenue is at least
c times the revenue of the optimal marketing strategy.

uation functions. In light of this hardness result, the paper
presents constant and logarithmic approximation algorithms
for a special case of this problem where the individual dis-
tributions are identical [1].

Finally, we discuss the second paper mentioned above
which studies optimal posted pricing in the presence of strate-
gic buyers. In this paper, the pricing problem is modeled as
a strategic game amongst buyers and the seller, and the pa-
per studies existence and revenue properties of the resulting
equilibrium. In particular, for a special case where the type
of all buyers is the same, it is proved that pure Nash equi-
libria exist and an efficient algorithm is given to compute
the pricing strategy that will result in an equilibrium that
maximizes the revenue of the seller among all such equilib-
ria [2].
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Today's smartphones have great potential as social sensors due to their numerous sensing capabilities. 

In this work, we present some insights into the correlations between social interactions, sleep and mood 

from an experiment where smartphones were used as social sensors to track face-to-face interactions in 

a co-located community of families. 

The data used for this analysis was collected from 54 participants (MIT graduate students and spouses). 

Participants were provided Android smartphones with a proprietary software sensing platform that 

allowed us to track face-to-face interactions through bluetooth proximity sensing in addition to other 

behavioral, contextual and communication patterns. Regular surveys were used to obtain additional 

contextual and behavioral information about participants. 

Using the data on face-to-face interactions over a one-month period, we compute an overall measure of 

“how social” an individual was. Other information used for this analysis includes the amount of sleep 

every night for each individual and the predominant mood for the following day. 

Using the mood information, we separated the groups into two: 1) those who exhibited primarily good 

mood (relaxed, calm, happy, content) i.e., on at least 70% of the occasions 2) those who exhibited poor 

mood (stressed, anxious, frustrated, angry) i.e., on at least 30% of the occasions. We observed that 

people who fell into the latter group were significantly less social in this community than those who fell 

into the former. While such a connection might have been made in the past, we believe that this is the 

first time such an observation has been made using actual face-to-face interactions. 

One of the key differences in this experiment when compared with our previous phone sensing 

experiments is the involvement of families. Hence, we compared behavior patterns between spouses. 

We observe that 1) the wives show poor mood more often than the husbands (p<0.0001), 2) the wives 

tend to sleep a bit better than their husbands do (p<0.001), and 3) there is no significant difference in 

how social the wives and husbands are in this community. 

We also observed that the amount of sleep obtained and the following day’s mood were not 

independent (p<0.0001). When the predominant mood observed was poor, participants had slept less 

than 7 hours the previous night in nearly 50% of the cases. However, when the mood observed was 

good, this number dropped to 30%. The following day’s mood was significantly poorer for those who 

slept less than 7 hours when compared to those who slept more than 7 hours. This result holds even 

when the husbands and wives are separated (p<0.001). 

Using smartphones as sensors provides us with a great opportunity to study interactions and behaviors 

in a social network. The ability to quantify face-to-face interactions provides us with a better way to 

study these relationships when compared to the traditional approach, primarily dependent on surveys. 

The results presented here only include partial analysis of the available data. We intend to have much 

more concrete analyses that provide novel insights into these factors by the time we present at WIDS.  
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Special structure in networks has been considered in several recent papers [1, 2, 3, 4]
that have cut across various subjects including social networks, information networks, and
biological networks as well as physical networks such as power grids and road networks. The
network science literature was largely inspired by the observation of macroscopic structural
properties (e.g., small world, power law degree distribution) of networks that occurred in
several distinct network types (e.g., social, information, biological networks), which have
diverse microscopic properties. The network science literature has largely been devoted to
finding the mechanisms by which networks form and/or evolve in order to generate the
structural properties that are observed. The momentum in this direction has largely been
driven by the statistical physics community [1, 2, 3], who argue that the phenomena of
complex networks (e.g., power laws) may be explained by laws that reach across all complex
networks because they are phenomena that are inherent to the complexity of the networks.

Alternatively, there has been recent interest in the structural properties of networks that
have been designed via optimization [5, 6, 7]. This perspective is motivated largely by the fact
that many networks (in the abstract sense) are models for physical networks that are designed
by humans to function with particular objectives (or even designed by nature to serve an
evolutionary purpose). These networks are distinctly different from social networks, which
are abstract models that describe interactions between actors (e.g., people talking, writing
scientific papers or dating). Such networks (e.g., power grids, communication networks)
are not designed through central coordination, but arise as a result of the objectives of
multiple independent actors. As a result there are structural properties that often exist in
these networks that are not explained by models that do not account for these functioning
characteristics [8].
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In this work we show through game theoretic principles, that networks may form with
particular structural properties. Specifically, we show that as the result of a game, a graph
with an arbitrary degree sequence may be formed as a stable network.

In this work we model the emergence of collaborations among players (e.g., firms) as
a strategic network formation game [9], by allowing selfish agents to choose with which
other agents they would like to form a link. Each agent has the option to deny a link to
another agent, so the formation of a link requires the cooperation of both players. A value
function assigns a value to each particular graph and this value is distributed to agents
by an allocation function (or allocation rule). This distribution of value drives a player’s
preference for particular graph structures. This work is unique in that it takes a perspective
similar to the network formation literature (i.e., modeling network formation as a result of
player strategies), but with a motivation from the network science literature (i.e., finding
the models that create particular topologies). The motivation in this work is different from
the network formation literature in that, rather than modeling particular applications and
finding the laws that govern stable networks, we focus on finding the network formation
mechanisms (e.g., strategies, objectives, dynamics) that result in the formation of networks
with particular structural characteristics that correspond to those observed in real networks.

Jackson and Wolinksy use pairwise stability to model stable networks without the use of
non-cooperative Nash equilibrium [10]. Pairwise stability implies that in a stable network,
for each link that exists, (1) both players must benefit from it and (2) if a link can provide
benefit to both players, then it in fact must exist. Jackson notes that pairwise stability is
not a perfect modeling mechanism, but allows us to consider models where each player may
veto a link.

We show how to construct an allocation rule to ensure that a graph with an arbitrary
degree sequence is stable. We show that players with convex objectives with minimums at
points di will result in a stable graph of degree sequence d = {d1, . . . , dn}. This theorem
implies there is a game that may result in a stable graph with a power law degree distribution
or in fact any degree distribution. Unfortunately, this stable graph is not uniquely stable as
graphs with a different degree sequence may also be stable for this game.

In addition to the problem of understanding the formation of graphs with arbitrary
degree sequences as the result of game theoretic interaction, we also study the problem of
generating graphs with these degree sequences. There has been recent interest in generating
graphs with an arbitrary degree sequence [11, 12, 13, 14]. The approach we investigate is
unique in that it is the result of an optimization problem. This approach compliments and
completes the model of graph formation as the result of a game. Further, in the event that
a degree sequence is not graphical (i.e. there is not a graph with that degree sequence [15]),
the math program constructed in our work returns the nearest graph with [graphical] degree
sequence. Here, nearness is measured using either the Earth Mover’s metric or the standard
!1 metric. The resulting mathematical programs can then be used to calculate the price of
anarchy for the game theoretic model of stable graphs in the foregoing collaboration game.
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Extended Abstract

The notion of learning in social networks derives from the proposition that individual agents update the 

beliefs they hold on some global truth by aggregating beliefs of connected neighbors.  Among the many 
alternative Bayesian and non-Bayesian approaches [1, 2, 4, 5] to model the dynamics of the learning 

process, an averaging procedure attributed to DeGroot [6] has drawn much attention in the recent years 

due its relative tractability.  The DeGroot learning scheme [3, 6] uses an intuitively appealing 
homogeneous Markov chain analog to capture the belief updating process as recursion in which new 

beliefs are produced as (convex) weighted averages of older beliefs [7, 3]. The achievement of 

stationarity in the chain under conditions of strong connectedness has been interpreted as a convergence 

of beliefs to a consensus on the global truth among the agents in the community. The convex weighting 

process in DeGroot learning leaves final beliefs enclosed within the range of initial beliefs with only the 

‘connectedness’ or ‘social influence’ of the network driving the evolution of beliefs.  

In this paper, we propose endogenous and exogenous mechanisms to apply some level of control on this 

update process. The rationale for control derives from the observations that a) opportunities for better 

utilization of ‘privately held’ social influence information at individual level with ‘publically held’ belief 
information may not have been exhausted in the basic DeGroot recursion; b) the emergence of new 

classes of social media offer opportunities for infusing individual and group level persuasive biases which 

can help shape the belief structures; and c) such control mechanisms may offer the means to lift and shape 

even consensus beliefs. 

The control methods proposed here are new contributions, and extend the applicability of DeGroot social 

learning theory to new areas where special classes of biases may be introduced to change the belief 
evolution patterns even as they are learnt through averaging processes. They also allow new ways to 

study the emergence of consensus, not merely as a result of network structure, but as a means to control, 

and even perhaps destroy it. 

We consider a social network of m agents who hold beliefs b (m x 1) about some global truth. Given a 

row-stochastic matrix T, where Tij denotes the social influence or attention agent i pays to agent j we 

consider two approaches to apply control on the basic DeGroot recursion: � = !� "# , where the 

subscripts refer to a learning or update cycle: one, which endogenously perturbs the matrix T to lift 
beliefs, and another, which exogenously controls the DeGroot recursion by embedding it in an exogenous 

linear control system. 

1. Endogenous Dynamic Control 

In this approach, we develop a new iterative control algorithm, which we refer to as BLIFT, in which 

each agent i perturbs its own private social influence weights (the row Ti of matrix T) and belief 
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information within the same cycle of the DeGroot recursion to obtain a lift of its own belief.  We show 

how the perturbation is calculated to guarantee at least an increase in the value of belief in every learning 
cycle, for every agent. 

We show the perturbation transforms the resultant Markov chain analog into a non-homogenous one and 

provide proofs of convergence and consensus for the following proposition. 

Endogeneous Control with BLIFT: Proposition 1 

Given a T matrix that represents an analog of an aperiodic and irreducible Markov chain, and the 
sequence of perturbations to T as defined in Algorithm BLIFT, the resultant non-homogeneous chain 

converges to a consensus that is bounded below by the belief which DeGroot update will converge to with 
the same T.  

Sketch of Proofs

We first show that BLIFT perturbation produces a non-homogeneous Markov chain equivalent in which 

each influence matrix Tt, when multiplied by previous beliefs to produce a new belief vector is guaranteed 

to be at least greater than its DeGroot update. We then show how this property produces a contraction of 

the variance in the sequence of belief vectors over time, thus guaranteeing convergence, as well as 

consensus under strong connectivity conditions 

We illustrate the application of BLIFT with examples of small social networks. 

2. Exogenous Dynamic Control 

We develop theory to explore linear exogenous control of the form �% = &%"' + (%"'()%"')  where 

)%"' = !�%"' and T is a constant influence matrix,  α(t-1) is an (m x 1) vector of parameter values, one for 

every agent, set for cycle (t-1). β(t-1) is a scalar value set (same value for all agents) in cycle (t-1).  This 

formulation embeds the DeGroot recursion within a linear system. We refer to q as DeGroot or network-

learned belief, and b as total belief.  

Geometrically, this control formulation permits the treatment of α and ( as individual and group 

‘persuasive bias’ parameters that may set to achieve a goal to pattern beliefs in the social network in a 

desired manner, and is depicted below pictorially: 

β

αi

αj
β

1

1

qi qj

bi

bj

bi =αi + βqi

bj=αj + βqj

Network Belief

Total

Belief

          

We develop proofs for convergence of the new recursion above, and show that: 
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i) Linear dynamic control of network learning of initial beliefs produces a weighted network learning 

of the control parameter & , which is also learnt by the agents using the influence matrix T, just as 

they learn beliefs.  

ii) As  * → , , a suitably large positive integer, the control mechanism converges; and control 

parameters determine asymptotic convergence behavior; 

iii)  As * → ,, the control parameters can swamp out network learning of beliefs, and the agents will be 

left with a learning of supplied & .

iv) No specific network structure assumptions were required to be made to achieve ‘weak’ convergence 

or network-learning of beliefs or even control parameter & 

We illustrate the theory with examples, and show how the choice of & and (% may be used for achieving 

different forms of purposeful control of belief learning in a social network. 

We present concluding remarks on possibilities of dynamic control social learning by extending the 

theory of non-Bayesian DeGroot learning with new contributions in this paper. We discuss potential 

applications in social media for purposeful communications.  

This paper extends preliminary work by the present authors on this subject dynamic control of belief 

learning, some of which is expected to appear soon [8, 9]. 
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Abstract

A theorem on (partial) convergence to consensus of multiagent
systems is presented. It is proven with tools studying the conver-
gence properties of products of row stochastic matrices with positive
diagonals which are infinite to the left. Thus, it can be seen as a
switching linear system in discrete time. It is further shown that the
result is strictly more general than results of Moreau (IEEE Transac-
tions on Automatic Control, vol. 50, no. 2, 2005), although Moreau’s
results are formulated for generally nonlinear updating maps. This
is shown by demonstrating the existence of an appropriate switching
linear system which mimics the nonlinear updating maps. Further
on, an example system is given for which convergence to consensus
can be shown by using the theorem. In this system the lengths of
inter-communication intervals in the switching communication topol-
ogy grow without bound. This makes other theorems not applicable.

Full preprint arXiv:1101.2926 



Randomized Optimal Consensus for Multi-agent

Systems with Time-varying Communication Graphs
∗

Guodong Shi and Karl Henrik Johansson†

Abstract

In this paper, we formulate and solve randomized optimal consensus problem for a multi-

agent system with time-varying interconnection topology. The multi-agent system with a

simple randomized iterating rule achieves an almost sure consensus meanwhile solving the

following optimization problem

min
x

N
∑

i=1

fi(x),

in which the information of objective function fi corresponding to agent i can only be

observed by node i itself.

At each time step, each agent independently chooses either taking an average among its

time-varying neighbor set, or projecting onto the optimal solution set of its own objective

function randomly:

xi(k + 1) =











∑

j∈Ni(k)

aij(k)xj(k), with probability p

PXi
(xi(k)), with probability 1− p

Both directed and bidirectional communications are studied. Connectivity conditions are

proposed to guarantee an optimal consensus almost surely. The convergence analysis is

carried out using convex analysis.

The results illustrate that a group of autonomous agents can reach an optimal opinion

with probability 1 by each node simply making a randomized trade-off between following its

neighbors or sticking to its own opinion at each time step.

Keywords: Multi-agent systems, Optimal consensus, Set convergence, Distributed opti-

mization, Randomized methods
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Social networks play an important role as communication platforms. Individuals interact with

their social peers on an ongoing basis and use the information gained through the interaction

when forming opinions or making decisions. The properties of opinion processes under repeated

interaction in social networks have received substantial attention recently. Both Bayesian and non-

Bayesian opinion formation processes have been considered. The usual setting is the following;

agents are organized in a social network and receive initial private information. Interaction occurs

in countable rounds and takes the form of all agents simultaneously announcing an opinion, a real

number, to their neighbors in the network. Bayesian agents make Bayesian inference regarding the

private information of all agents based on the announcements they observe, while the announce-

ment of a non-Bayesian agent in a given period is simply the weighted average of the last period

announcements of his neighbors and herself. One property of the opinion formation process that

has been established for both Bayesian and non�Bayesian learning is asymptotic consensus of all

agents in a strongly connected network. See DeMarzo, Vayanos and Zwiebel(2003) and Golub and

Jackson(2010) for the non-Bayesian, and Mueller-Frank(2011) for the Bayesian case.

In terms of positive relevance, Bayesian models have the weakness that Bayesian inferences

require potentially highly complex calculations from the agents. A potential weakness of the non-

Bayesian models is the reliance on a particular functional form, weighted average, of the updating

functions. Agents are assumed to apply weighted averages when forming their opinions, and weights

are �xed in every period.1

This paper is concerned with the robustness of asymptotic consensus when considering a larger

class of updating rules. I coincide with the existing non-Bayesian approach in assuming that the

�E-mail: manuel.mueller-frank@economics.ox.ac.uk
1DeMarzo, Vayanos and Zwiebel allow for changes in the weight agents assign to their own opinion while keeping

the relative weights assigned to the opinions of neighbors constant.

1

Poster Session 2



announcement of an agent in a given period is a function of the last period announcements of his

neighbors and herself.

Three properties of the updating function are shown to be of relevance when considering as-

ymptotic consensus; continuity, a property which I denote as constricting, and �nite types. A

function is constricting if the following property holds for all announcement vectors; if in a given

period a neighbor of agent i announces an opinion unequal to the announcement of agent i, then

the announcement of i in the next period is strictly smaller than the highest announcement in his

neighborhood and strictly larger than the smallest announcement in his neighborhood.2 Opinion

formation satis�es �nite types if the number of di¤erent updating functions an agent uses over time

is �nite.

I show that if the social network is strongly connected and the updating functions of all agents

are constricting, continuous and satisfy �nite types, then the opinions of all agents in the net-

work converge. This generalizes the existing asymptotic consensus result of DeMarzo, Vayanos

and Zwiebel(2003), and Golub and Jackson(2010) in two ways. First, I allow agents to switch

their updating function in�nitely often over time and second, I consider a larger class of updating

functions.

This larger class of updating functions captures interesting types of opinion formation behav-

ior that cannot be captured by the �xed weighted average functions used in the literature. For

one, approximate cognitive dissonant behavior, where the weight an agent assigns to his neighbor

decreases with the di¤erence in opinion, is captured by constricting and continuous updating func-

tions. Also, under �xed weighted average updating functions the opinions of all neighbors matter

and moreover, which neighbor announces which opinion. However, some individuals might only

focus on the extreme opinions in their neighborhood, independent of the identity of the agent ex-

pressing the extreme opinion, and disregard all others. Here one can think of partisan behavior

that assigns very high (low) weight to the largest opinion, very low (high) weight to the smallest

opinion, and no weight to all other opinions. This type of partisan behavior can be used to model

political partisans where opinions are ordered in a left-right spectrum.

As my second result I show that asymptotic consensus under the above conditions is also robust

against introduction of random noise. If the opinion of each agent in a given period equals the

value of his updating function plus an idiosyncratic random error term, and the probability of the

error term equaling to zero converges to one geometrically, then asymptotic consensus holds with

probability one.

2fi : Rv ! R is constricting if for all a 2 Rv, al 6= ai for some l 2 Ni implies min
j2Ni[fig

aj < fi(a) < max
j2Ni[fig

aj :
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COMPUTING SYMMETRIC FUNCTIONS ON MEMORY BOUNDED SOCIAL

NETWORKS

ELCHANAN MOSSEL 1, ANUPAM PRAKASH 2 AND GREGORY VALIANT 3

1. abstract

1.1. Context and previous work. Social networks are computationally constrained by bounds
on the memory of agents and limits on the amount of interaction between neighbors. Computational
tasks that would be trivial without these restrictions become interesting in the social network set-
ting. We investigate the computational power of social networks in the bounded memory dynamics
model formalized in [7]. The model is parameterized by the amount of memory m available to each
agent and the rate of communication ν between neighbors, where interaction between neighbors is
modeled by a Poisson process of rate ν.

Computation over a social network is modeled as the task of evaluating a function f : [k]n → [k]
where the inputs to f are drawn from [k] and are distributed among the n agents in the network.
Except for their immediate neighborhood, agents have no information about the size of the network,
its structure or the identities of other agents. It is natural to restrict the family of functions f being
computed, we restrict the function f to be symmetric capturing the anonymity of agents in the
network.

The dynamics proceeds by updating the local state of the agents for every pairwise interaction.
We say that the network computes the function f if for all possible inputs, every agent in the
network eventually converges to the correct value of f . The question that we address is for which
functions f there is a protocol for computing f for all connected networks. Furthermore for cases
where a protocol exists we are interested in the convergence time in terms of the size of the graph
n.

The computational problems of achieving consensus [6] [5], computing the majority over two
colors [3] and graph coloring [4] on social networks have been studied in different contexts including
experimental sociology and computer science. The computational model is motivated by these
works, and abstracts some of the features common to the experimental studies. Protocols for
reaching consensus with no additional memory and for computing the majority over two colors
with 1 extra bit of memory per agent were presented in [7]. Closely related results bounding
the convergence time of distributed consensus protocols have appeared in the recent literature on
distributed computing [2, 1].

1.2. Motivation: The values assigned to the nodes in the network are referred to as colors, in
accordance with the existing literature. The value of a binary symmetric function f : {0, 1}n →
{0, 1} depends on the number of nodes in the network with color 0. Computation of a binary
symmetric function is motivated by the problem of estimating the number of nodes in the network
that satisfy a given property, as can be seen by assigning color 0 to nodes having the property. For
the case of k different colors, we consider the problem of computing comparison statistics like the

1 UC Berkeley and Weizmann Institute of Science, E-mail: mossel@stat.berkeley.edu.
2 Computer science division, UC Berkeley, E-mail: anupamp@eecs.berkeley.edu.
3 Computer science division, UC Berkeley, E-mail: gvaliant@eecs.berkeley.edu.
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plurality color or the least common color. Computation of symmetric functions is thus motivated
by the problem of estimating statistics over social networks.

1.3. Results: Extending the results of [7] we show that given c bits of memory per agent it is
possible to compute: (i) The c least significant bits in the binary representation of r, where r is the
number of nodes having color 0. (ii) The threshold function f : [n] → {0, 1} which is 1 if r

n−r
≥ a

b

and 0 otherwise for integers a, b ≤ 2c.
An information theoretic argument shows that there are symmetric functions that require O(log n)

bits of memory per node to compute. Furthermore we show that this is tight and that given the
truth table of a symmetric function it can be computed on a social network using O(log n) bits of
memory per node.

Theorem 1. Every symmetric function can be computed by a network with O(log n) bits of memory

per node and this result is tight.

Interestingly we show that every digit in the binary representation of r can be computed with
O(log log n) memory per node.

Theorem 2. Every digit in the binary representation of r can be computed by a network with

log log n + 2 bits of memory per node.

While we currently do not have an explicit example of a symmetric function that requires more
than O(1) memory per node, we conjecture that the threshold function which is 1 if r

n−r
≥ τ for

an irrational number τ requires O(log n) memory per node.
For the case of k different colors we consider statistics that can be determined by comparison

between the number of nodes having a given color, such as the plurality color, the least common
color or the median color. While it easy to construct protocols for computing the plurality where
the memory requirement per node is O(k2) or O(k) using the majority protocol of [7], we provide
a protocol that computes the plurality with a much smaller number of bits. We show that O(log k)
bits of memory per node suffice to compute plurality and this is optimal,

Theorem 3. The plurality function over k colors can be computed by a network with O(log k) bits

of memory per node.

The proof extends to the computation of statistics that can by evaluated using comparison trees
of depth O(log k). All of the protocols that we describe are independent of the geometry of the
graph and the expected time for convergence is poly(n).
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We study how the prevailing majority opinion in a social network can be rapidly reversed by a

committed minority who consistently proselytize an opinion contrary to the majority, and are un-

influencable. There are many precedents for such events in human history, and it could be argued

that several social upheavals have been facilitated through the action of such inflexible minorities,

the suffragette movement, and the American civil rights movement being two such examples.

Previous work on opinion spreading and the diffusion of innovations has relied on models such

as the Bass model [1] and the Threshold model [2]. While these models are suitable for studying

influence spreading in the case where investment in a new idea, behavior or opinion comes at a

cost, they do not account for the case of competing opinions where switching one’s state has little

overhead.

In order to address the latter case, we focus on an opinion dynamics model which we call

the binary agreement model [3]. In this model, each node can either possess one of the two

competing opinions, or both the opinions simultaneously - the presence of this ”intermediate”

state is what distinguishes it from the voter model. In addition to being useful in modeling

opinion evolution where the cost of changing one’s opinion is low, the binary agreement model is
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amenable to situations where changes in state are not deliberate or calculated, but unconscious [4].

Furthermore, by its very definition, the model may be applicable to situations where agents while

trying to influence others, simultaneously also have a desire to reach global consensus [5].

The evolution of opinions in this model takes place through the following rules: at each time

step, a randomly chosen speaker from the social network voices a random opinion from his list of

opinions to a randomly chosen neighbor, designated the listener. If the listener has the spoken

opinion in his list, both speaker and listener retain only that opinion, else the listener adds the

spoken opinion to his list. The initial condition that we focus on is one where a fraction of p < 0.5

nodes possess opinion A and the rest of the nodes possess opinion B. In addition, we assume that

the initial minority opinion holders are committed i.e. they can influence other nodes to alter their

opinions, but are un-influencable themselves. Given these initial conditions, the only absorbing

fixed point of the system is the consensus state where all influenceable nodes adopt opinion A

- the opinion of the committed nodes. The question that we specifically ask is: how does the

consensus time vary with the size of the committed fraction? More generally, our work addresses

the conditions under which an inflexible set of minority opinion holders can win over the rest of

the population.

Specifically, we show that when the committed fraction grows beyond a critical value pc ≈ 10%,

there is a dramatic decrease in the time, Tc, taken for the entire population to adopt the committed

opinion. In particular, for complete graphs we show using a quasistationary approximation that

when p < pc, Tc ∼ exp(β(p)N) (where β(p) > 0), while for p > pc, Tc ∼ lnN . We conclude with

simulation results for Erdős-Rényi random graphs, and scale-free graphs which show qualitatively

similar behavior.
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ON THE EQUILIBRIUM OF BINARY CHOICE MODELS

WITH POSITIVE EXTERNALITIES

J. TIPAN VERELLA, STEPHEN D. PATEK

Abstract. Models of binary decision with positive externalities are of practical significance since they
enhance the understanding of social and economic processes. Analysis of such model often relies on assuming

a continuum of agents or particles whose types are drawn from a distribution. We show that the problem of
characterizing the equilibrium of a threshold model of collective behavior is a exactly solvable on a complete
graph. We provide the distribution of equilibrium percentage of particles/agents switching to the new state
and the distribution of the time to reach this equilibrium. We can recover the folk fixed point result by
taking a continuum limit.

We consider a particle system with n particles labeled i ∈ {1, . . . , n}. A particle i can be in either of

two states, si(t) ∈ {0, 1} at discrete time t, indicating that the particle is active, si(t) = 1, or not. All

particles start out being inactive. To each particle i we associate an idiosyncratic constant Πi, which are

iid according to a distribution function F . We also attribute to a particle i a function Ui(t) = B(Πi, X(t)),
the utility or energy of the particle at time t; where B(Π, X) is an non-decreasing function of both Π and

X , and X(t) is the percentage of particles that are active at time t, i.e. X(t) =
1

n

∑n

i=1
si(t). A particle

becomes active whenever Ui(t) > 0. Note that since B(Π, X) is non-decreasing in both Π and X , X(t)
is a monotone non-decreasing sequence in t. The underlying graph structure for this model is simply the

completely connected graph on n vertices. We are interested in characterizing the equilibrium percentage of

active particles as a function of the distribution function F , the function B(., .) and the number of particles

n.
The object of this work is to supplement our understanding of this kind of model by providing a description

of the above particle systems when n <∞. We will refer to the model described above as a model of binary

choice with positive externalities (BCPE) after [Sch73], although the form that it takes in this paper is closer

to the formulation provided in [Cab90], in which the model is applied to the study of diffusion of innovations.

Models of diffusion of innovations, [Cab90, FB95, GDGP
+
02, MPV09, SJGH10, Kem10], can be framed as

models of binary choice with positive externalities, the choice being whether or not to adopt the innovation.

The BCPEmodel has been related in the literature to the random-field Ising model [SDP04, SGN08, GNPS09]

or referred to as a model of cascades [Wat02, HMG10] in situations where the underlying graph structure is

more intricate than a complete graph. Unlike those models of cascades on networks, in our simpler setting,

we are able to pursue an exact description of the equilibrium.

In order to analyse the BCPE model, we write the following recursive definition for the percentage of

active particles at time t:

(1)



















Xn(0) = 0

Xn(t+ 1) =
1

n

n
∑

i=1

1 {B(Πi, Xn(t)) > 0 }

For a given choice of F and B(., .), we are interested in Xn:

(2) Xn := lim
t→∞

Xn(t).,

which can be interpreted as the equilibrium in which the most recent activation fails to encourage another

particle to activate.

We note that Xn is a random variable with support on

{

0, . . . ,
j

n
, . . . , 1

}

for j ∈ {0, . . . , n}, that the

limit exists by the monotonicity of Xn(t) in t, and that Xn(t) = Xn(n) for all t ≥ n.
1

 



Our main result follows.

Theorem 0.1. Given a particle system of size n, define a configuration of the system σ = (σ0, . . . , σn) with

σk ∈ Z
+ for all k ∈ {0, . . . , n} and

∑

k σk = n to be an array indicating that σ0 particles are such that they

will activate on their own, σn particles will never become active, and σk particles will become active when k
particles are active, but not before. Also let {pk}nk=0

be a sequence of probabilities defined as follows:

p0 = P {B(Π, 0) > 0}(3)

...

pk = P

{

B

(

Π,
k − 1

n

)

< 0, B

(

Π,
k

n

)

> 0

}

, k ∈ 1, . . . , n− 1(4)

...

pn = P

{

B

(

Π,
n− 1

n

)

< 0

}

.(5)

Furthermore, let T = min

{

k > 0:

k
∑

i=0

σi < k

}

. Then the probability mass function of Xn is given by:

(6) P

{

Xn =
S

n

}

=

∑

{ σ0 + . . . + σT = S }

(

n

σ0, . . . , σn

) n
∏

k=0

pσk

k .

The continuum version of the above model where introduced in economics [Sch73] and in sociology [Gra78].

Models of binary decision with externalities are of practical significance since they enable a theoretical

understanding of social and economic processes like diffusion of innovations [Gri57, Rog62, CKM66]. In the

socio-economic context, one thinks of the particles as agents and arrives at the equilibrium percentage of

active agents using the following heuristic. The marginal agent i∗ is the last agent to find it beneficial to

become active. This must mean that everyone before them had positive utility, while everyone after had

negative utility. Hence the marginal agent has utility zero, i.e. Πi∗ solves B(Πi∗ , X(t)) = 0, and all agents

with Πi ≥ Πi∗ become active. Therefore the proportion of agents X∗
to become active is the proportion of

agents that are active as the marginal agent becomes active:

(7) X∗
=

∫

∞

Πi∗

dF (u).

We show that the continuum characterization can be obtained as X∗
= limn→∞ Xn.
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Abstract

Customer churn prediction models aim to detect customers with a high propensity to attrite. This study investigates the applicability

of relational learning techniques to predict customer churn using social network information. A range of existing, extended, and

novel relational classifiers and collective inference procedures have been (re-) implemented and applied on two large-scale real

life data sets obtained from international telco operators, containing both networked (call detail record data) and non-networked

(usage statistics, socio-demographic, marketing related) information about millions of customers. The results of the experiments

indicate the existence of a limited but relevant impact of network effects on customer churn behavior. Combining a relational and

a local classifier therefore improves the predictive power of a customer churn prediction model compared to a stand-alone local or

relational classifier. Collective inference procedures however are shown to have a negative impact on the classification performance.

1. Methodology and experimental setup

1.1. Social network mining for customer churn prediction

Huge amounts of networked data on a broad range of network

processes and information flows between interlinked entities

are available, such as for instance call logs linking telephone

accounts (Dasgupta et al., 2008), money transfers connecting

bank accounts, or hyperlinks relating web pages (Neville and

Jensen, 2007). These massive data logs potentially hide infor-

mation that is extremely valuable to companies and organiza-

tions, but as well is extremely difficult to discover due to the

size and the fragmentation of the data.

Networked data present both complications and opportuni-

ties for predictive data mining. The data are patently not in-

dependent and identically distributed, which introduces bias to

learning and inference procedures (Jensen and Neville, 2002;

Macskassy and Provost, 2007). Relational learning aims to ex-

ploit the information contained within the network structure of

data instances, and to incorporate this information within a net-

work classification or regression model (Džeroski and Lavrač,

2001; Getoor and Taskar, 2007). The aim of this study is to

apply and develop relational learners to predict customer churn

using social network information derived from call detail record

(CDR) data, containing a vast amount of communication logs

between customers of a telecom operator.

Macskassy and Provost (2007) introduced a node-centric,

modular framework with network learners consisting of a local

model, a relational model, and a collective inference procedure.

∗Corresponding author. Tel. +32 16 32 68 87; Fax +32 16 32 66 24

Email addresses: wouter.verbeke@econ.kuleuven.be (Wouter

Verbeke), karel.dejaeger@econ.kuleuven.be (Karel Dejaeger),

thomas.verbraken@econ.kuleuven.be (Thomas Verbraken),

david.martens@econ.kuleuven.be (David Martens),

bart.baesens@econ.kuleuven.be (Bart Baesens)

ID # nodes # edges CDR time span # mean degree

1 1.365.451 2.446.672 3 months 3.58

2 8.337.285 16.494.177 6 months 3.96

Table 1: Summary of data set characteristics: ID, number of customers or

nodes, total number of links between the nodes, call data time span, and the

average degree calculated according to Nanavati et al. (2008).

This framework will be followed and applied in this study in

order to compare stand-alone versions of network learners with

combinations of a local classifier and a network model, both

with and without collective inference procedures. To this end,

two large real life data sets have been obtained from interna-

tional telco operators. The characteristics of these data sets are

summarized in Table 1. Data set 1 does not include local at-

tributes for the nodes, whereas data set 2 contains 58 or 119 lo-

cal attributes for the customers depending on the contract type.

1.2. Relational classification techniques

Due to the large scale of the networks, a number of existing

relational learners have been re-implemented using sparse and

parallel computation techniques. However, the time complex-

ity of certain relational learning techniques (such as, e.g., the

network-only Bayes Classifier, (Chakrabarti et al., 1998)) ap-

peared prohibitive for application to large scale networks (cfr.

infra, future research).

Furthermore, adapted versions of computationally expensive

collective inference procedures, i.e. Gibbs sampling (Geman

and Geman, 1984) and Iterative Classification (Lu and Getoor,

2003), have been developed with a reduced complexity, by

making inferences concurrently for the entire network in each

iteration, instead of node by node within each iteration as cur-

rently the case.
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Relational learners typically restrict the impact of the net-

work on a node to the first order neighborhood, i.e. the

nodes in the network that are directly connected to a particular

node (e.g., Macskassy and Provost (2007); Neville and Jensen

(2007)). However, in many applications first order Markov be-

havior is violated, and higher order nodes in the network have

an impact which should be accounted for. Therefore, a mod-

ule has been developed which can be applied in combination

with any network learning technique to incorporate the impact

of higher order neighborhood nodes. This problem is closely

related to the All Pairs Shortest Path problem (APSP) (Seidel,

1992) and the distance or minimum-plus matrix product. An

adjusted version of the minimum-plus matrix product has been

developed to incorporate higher order nodes for each node in

the network represented by the adjacency or weight matrix,

thus allowing to incorporate non-Markovian behavior in net-

work learners. The first order network weight matrix is simi-

lar to the first order distance matrix in APSP, but not identical,

since weights are the inverse of distances as a closeness mea-

sure, and therefore existing APSP solutions require adjustment.

2. Preliminary experimental results, discussion and future

research

Figure 1 plots the call graph around a specific customer up to

degree eight, with churners represented by red dots, and non-

churners represented by blue dots, measured over a time frame

of three months. The length of the links indicates the close-

ness between two connected customers (except for connections

between customers from the different branches starting from

the central customers, these are not proportional to closeness),

i.e. the more contact between customers, the closer they are in

the network. Multiple sequences of connected churners (with a

maximum length of 12 sequential churners) can be observed in

this network, indicating the existence of propagation of churn

and social network effects throughout the customer network. It

are exactly these social network effects that a relational classi-

fier aims to model in order to predict customer churn.

Figure 1: The call graph around a customer to degree 8, with churners repre-

sented by red dots, and non-churners represented by blue dots.

The results of a number of experiments, in which a range

of existing, adjusted and extended network learners have been

applied to the data sets summarized in Table 1, confirm that

network effects do exist in a customer churn prediction setting

(although only for a small fraction of the customers), and there-

fore should be taken into account by customer churn prediction

models in order to improve classification power. Collective in-

ference procedures however do not appear to improve classifi-

cation power, and even have a negative impact. Finally, pre-

liminary experiments indicate that increasing the order of the

network neighborhood of the adjacency or weight matrix in or-

der to model non-Markovian network behavior appears to have

a minor positive effect, which is nonetheless existent and im-

proves classification accuracy.

Currently, various experiments are ongoing, such as combin-

ing local and network classifiers, increasing the order of the

network neighborhood, and the application of newly developed

network classification algorithms. As a topic of future research,

specific targeted sampling techniques, based on node and com-

munity diversity, will be developed in combination with active

learning techniques in order to deal with scalability issues, as

well as to improve learning. Generally, sampling in networked

data is believed by the authors to be an important issue for fu-

ture research in network learning. A second avenue of future re-

search deals with including time-dependencies within network

learning.
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1 Introduction

There has been growing body of work and recent interest in the social networks like

Twitter and Facebook alongside their phenomenal growth and impact on our lives. How-

ever, we feel that there exists a hidden component of information within these networks

that can help to get better understanding of the ’real’ social network of a person. For

instance, a person may have 100’s number of friends but might be actually ’friends’

with only a short number of them. What is there that can help us make that distinction?

We believe that text analysis is an important portion of the social network analysis and

a lot of it is hidden and can’t just be captured by ’links’ alone. Also, we have availabil-

ity of Masssive multi-player online social games like Second Life, that allow for much

greater interaction than that is possible on facebook like sites in terms of expressivity,

the user-experience and services. Similar to Facbook in having friends, Second Life had

the kind of spatio-temporal ’situated’ presence that the user can opportune to interact

with the other people in the surrounding. This posits the question that we asked ear-

lier about inferring the ’real’ social network of the people, which is more challenging

in Second Life in that there is no publically accessible way to get the friends list of a

person (as opposed to Facebook). This forms the basis of our research: making sense

of the social interactions among people in Second Life. In this abstract our focus is on

chat dialog analysis within Second Life. When we embarked on this research project,

we collected across 4 weeks of data more than 180 thousand dialogs across eight re-

gions in Second Life (selected on varying category of the region and the user traffic) on

the public chat channel, of which we separated out the 2 weeks of data for which we

were able to collect enough chat dialogs across all regions (see [1] for data collection

details).

We devised two methods for social network extraction from dialogs. This is a more

challenging task, for we are operating in an environment where the users can enter or

leave the chat at any time and the data consists of multiple overlapping conversations

with variagated topics. An obvious first challenge was to identify the user the conver-

sation is directed to for establishing the link between two users The first of the two

algorithms, uses a time overlap, where we establish a link between a user and all other

users within a twenty minute (default logout timeout after inactivity in SL) window,

for the first and last occurrence from the user. This resulted in a raw baseline that we

can compare our more refined algorithm that relies on the shallow semantic information

(essentially rule based approach), which we call Shallow semantic temporal overlap or 
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SSTO (for details see [2]). The SSTO algorithm relies on occurrence of a username, a

salutation (hi etc.), a question word (who/what etc.), second person pronouns and pre-

vious conversation information for the current user in determining the to/from labeling

for the chat dialog. Once we have the to/from labeling for the chat dialogs, we can

then construct the social network of the users based on these exchanges. In ( [2]), we

show that we can further use the community detection on the resulting social network

to uncover the latent group structure present within this network using state-of-the-art

community detection algorithms. This added information can then be used in refining

the to/from labeling for the dialogs - in the event that we are unsure about the labeling

we can look into a previous user from the same community the current user is in, for

the last spoken utterance and establish a link between them for SSTO. Similarly for the

temporal overlap, we can restrict ourselves to constructing links only between the users

that are from the same community , thus filtering out the spurious links. To establish a

quantitative measure, we compared the results from the original, community enhanced

and hand-labeled dialogs for 1 hour of data. The results (see [2] for details) in table 1

for the frobenius norm, show that addition of community information adds little to the

SSTO algorithm, while greatly improving upon the temporal overlap algorithm. This

shows that the addition of community information is a useful measure that can refine

the link detection algorithms.

Table 1. Frobenius norm: comparison against hand-annotated subset.

SSTO SSTO+LC SSTO+SC TO TO+DT TO+HT

Help Island Public 35.60 41.19 46.22 224.87 162.00 130.08

Help People Island 62.23 60.50 66.34 20.29 20.29 54.88

Mauve 48.45 45.11 51.91 58.44 58.44 49.89

Morris 24.67 18.92 20.76 43.12 37.54 38.98

Kuula 32.12 30.75 32.66 83.22 73.15 77.82

Pondi Beach 20.63 21.77 21.56 75.07 62.62 71.02

Moose Beach 17.08 18.30 21.07 67.05 53.64 50.97

Rezz Me 36.70 39.74 45.78 38.72 39.01 41.10

Total error 277.48 276.28 306.30 610.78 507.21 514.74

In Future, we plan to enhance our understanding of the chat dialogs by utilizing the

content, that we thus far have ignored save for the shallow heuristics (we chose a rule

based approach in first place because we wanted our technique to be unsupervised and

able to work on large data-set in reasonable time period).
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Today, unemployment is one of the most pressing 

socio-economic problems in the European Community. 

In particular, Spain ranks first in unemployment rate 

among young people under 25 years. Moreover, ac-

cording to data from Eurostat [1] most people have 

found their last job through recommendations from 

family and friends, despite being active job seekers on 

the Internet. 

The online job search market has rapidly evolved 

and has attracted millions of candidates expecting im-

provement in the process of looking for jobs, and re-

cruiters expecting to find them. There are large em-

ployment databases where both candidates and em-

ployers put their information, but the knowledge from 

that data has not yet been fully exploited.  

InfoJobs.net is the leading job site in Spain with 

about 47% of market share in 2009 and is ranked third 

in Europe. The site manages more than 60.000 em-

ployers and 4.5 millions of candidates. Last year the 

site registered 800.000 job offers and more than 51 

millions of subscriptions that lead to 250.000 job deals. 

It means that each employer contributes an average of 

13.3 jobs and that each offer receives an average of 63

subscriptions per year.   

The wealth of available information enables study-

ing job market trends and user behavior on the educa-

tion and employment decisions during their profes-

sional careers. This collective knowledge can be ex-

ploited to help users discover career paths that suit 

them best and promise to meet their expectations.  

We develop a large-scale graph-based prediction 

model of labor market and a recommendation system 

to provide answers to the questions of “What options 

you have in your career path?”, “Do you need to en-

hance your skills to move ahead?”, “How you compare 

with people like you?”, “What is the social influence of 

an education center?” and generate suitable recom-

mendations for both job seekers and employers. As of 

this writing, our model has been built from about 2 

millions of real-world curriculum vitaes, including 

information on job experiences, skills and education 

data, and is growing due to new subscribers since the 

beginning of the year.  

In our approach, we build a social network model 

by representing individual actors as nodes and their 

relationships as links within career-path graph. A job 

seeker is related to education centers by its academic 

career and to positions, companies and industry sectors 

through its professional trajectory. Employers generate 

offers directed to the candidates and education centers

provide them training necessary to obtain education 

and qualifications. The relationships between the ac-

tors are characterized by duration, management level, 

salary and other relevant attributes.

The model data is captured and updated by auto-

mated harvesting of CV database and pre-processed by 

data normalization and de-duplication tools that help 

correcting data incoherencies and complete missing 

data. These steps result crucial when working on real-

world datasets collected over years from different users 

and systems and suffer different kinds of data incoher-

ency problems.  

To provide recommendations we use a hybrid ap-

proach that combines collaborative filtering [2, 3, 4, 5] 

techniques with social network analysis [6, 7, 8, 9] into 

graph-based collaborative filtering [10]. This ap-

proach operates on career-path graph, and also in-

cludes attributes of job seeker nodes, offer nodes, and 

potentially other relevant entities from a database to 

make hybrid recommendations. We discover and group 

similar career paths by analyzing user links in the 

graph-path perspective and finding cohesive sub-

groups. 

Our recommender offers job seekers personalized 

suggestions on training curses, missing skills, and pro-

fessional experiences to guide them into successful 

career paths. We discover career path patterns of simi-

lar candidates and apply graph-based influence scoring 

[11, 12, 13] functions to rank the suggestions. For ex-

ample, we measure social and economical impact of 

each education center on the society in function of 

jobs, positions, management level and salaries 

achieved by their graduates (Figure 1). In that sense, 

highly influential centers (such as MBA centers) are 

more likely to be recommended to candidates with 

career paths aiming at executive jobs and high salary 

ranges.  

In this paper, we apply social network analysis to 

make better recommendations. We find that graph-

based approach to be a powerful tool that provides 

great potential in making recommendations. Moreover, 

we demonstrate that out approach operates in high-

traffic environment, produces results in real-time, and 

scales well to large datasets.
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Figure 1: Example education centers network in Va-

lencian Community in Spain. The graph shows rela-

tionships between individual candidates and education 

centers as declared in their curriculum vitaes. The net-

work is composed of two big communities that corre-

spond to public universities (Universidad de Valencia 

and Universidad Politécnica de Valencia) and a num-

ber of small education centers. The candidates that 

studied in a pair of centers enforce the relationship 

between the centers.  
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The	   Market	   Economy	   of	   Trips	   (MET)	   investigates	   the	   potential	   of	   using	   market	   incentive	  
mechanisms	  and	  a	  visual	   information	  system	  to	  create	  sustainable,	  self-‐organizing,	  one-‐way	  
vehicle	  sharing	  systems.	  That	  is	  systems	  requiring	  minimum	  central	  intervention.	  

One-‐way	   vehicle	   sharing	   systems	   are	   distributed	   urban	  mobility	   networks	   of	   vehicles	   and	  
parking	  stations	  that	  allow	  users	  to	  conveniently	  pick	  up	  a	  vehicle	  from	  any	  station	  and	  drop	  
it	  off	  to	  any	  other	  station.	  Popular	  examples	  are	  bike	  sharing	  programs	  however	  this	  trend	  is	  
rapidly	  entering	  automobile	  markets.	  	  

Despite	   their	   great	   convenience	   vehicle	   sharing	   systems	   have	   drawbacks	   too.	   Due	   to	  
asymmetric	   demand	   patterns,	   eventually	   all	   vehicles	   are	   ending	   at	   the	   stations	   with	   no	  
demand.	   This	   inventory	   imbalance,	   not	   only	   decreases	   throughput,	   but	   it	   furthermore	  
increases	   trip	   time	   as	   drivers	   search	   for	   parking	   spaces.	   Existing	   policies	   redistribute	  
manually	  vehicles,	  which	  is	  a	  complex,	  inefficient,	  and	  highly	  unsustainable	  solution.	  Not	  only	  
it	   is	  operationally	  complex,	  but	   furthermore	   it	   is	  expensive:	  either	   the	   fleet	  needs	   to	  be	   too	  
large	  or	   the	   redistributions	  need	   to	  be	   too	   frequent.	   In	   addition	   continuous	   redistributions	  
keep	   vehicles	   away	   from	   the	   system	   reducing	   further	   service	   capacity.	   As	   a	   consequence,	  
many	   vehicle	   sharing	   systems	   end	   up	   wasting	   more	   resources	   for	   sustaining	   their	  
performance	  than	  the	  value	  of	  the	  service	  they	  provide.	  

In	  this	  research	  I	  am	  exploring	  a	  new	  strategy	  to	  create	  autonomous	  self-‐organizing	  vehicle	  
sharing	  systems	  that	  uses	  price	  incentives	  to	  smooth	  demand	  imbalances,	  and	  PriceScape,	  an	  
interactive	  mapping	   tool	   and	   graphical	   user	   interface	   to	   intuitively	   communicate	   location-‐
based	   price	   information	   to	   the	   users.	   Similarly	   to	   a	   market	   economy,	   prices	   adjust	  
dynamically	   to	   parking	   needs	   incentivizing	   users	   to	   drive	   vehicles	   to	   stations	   that	   mostly	  
need	   them	   while	   discouraging	   arrivals	   to	   stations	   that	   don’t	   need	   them.	   PriceScape	   uses	  
dynamic	  heat	  map	  display	  and	  isometric	  price	  curves	  to	  describe	  areas	  with	  similar	  payoffs.	  
Like	   the	   analogy	   of	   navigating	   through	   a	   price	   landscape,	   climbing	   from	   valleys	   to	   hills	   is	  
expensive,	  while	  descending	  from	  hills	  to	  valleys	  is	  rewarding.	  	  

This	  work	  explains	  decision-‐making	  in	  dynamically	  priced	  mobility	  systems,	  investigates	  the	  
conditions	   under	  which	   a	   stable	   equilibrium	   state	  may	   exist,	   and	   if	   so,	  whether	   local	   price	  
calculation	   and	   visual	   perception	   of	   the	   price	   landscape	   is	   sufficient	   to	   bring	   it.	   Is	   there	   a	  
pricing	   policy	   that	   can	   make	   the	   system	   self-‐sustaining	   such	   that	   the	   funds	   from	   its	  
overpaying	   users	   are	   enough	   to	   reward	   its	   underpaying	   users?	   How	   efficient	   can	   a	  
dynamically	  priced	  vehicle	  sharing	  system	  be?	  

To	  address	  these	  questions	  I	  am	  developing	  both	  a	  game	  experiment	  to	  empirically	  evaluate	  
how	   users’	   visual	   perception	   of	   payoffs	   affects	   decision	   making,	   and	   a	   computational	  
framework	  using	  System	  Dynamics	  and	  Urban	  Economics,	  to	  explore	  the	  theoretical	  limits	  of	  
efficiency	  of	  MET	  under	  different	  demand	  patterns,	  pricing	  policies	  and	  population’s	  income	  
distribution.	  	  
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We study a network of individuals belonging to 

Herzio (http:// herzio.com), a social music 

website in which information is shared 

dynamically via friendship links. On the site, 

participants can listen to songs, create 

friendships with others, and recommend songs 

to peers. In addition, it is possible to identify 

communities of nodes not necessarily linked by 

friendship.  

 

Herzio is a relatively young network (less than 

two years old), which focuses on spreading the 

work of independent musicians; therefore, few 

exogenous shocks (i.e. hit singles shared by most 

of the network) exist. After removing individuals 

with abnormally high degrees of connectivity 

(defined as individuals with a degree greater 

than one hundred), the community included 

3086 listeners. In order to study the behavior of 

only active individuals, we then reduced the data 

set to only include individuals who were active 

for a minimum of six months. The community 

studied and discussed represents 235 

individuals.   

 

Past work has highlighted the role of social 

influence in generating unpredictability and 

inequality in markets for cultural products 

[Salganik et al, 2006], as well as shown that 

social influence plays an informational role in 

certain systems [Krumme et al, 2011]. However, 

in these experiments, there was no network 

structure available to participants.  

 

Other research has focused on the spread of 

behaviors, such as smoking, through social 

networks [Christakis and Fowler, 2008]. In the 

current work, we ask to what degree does 

network proximity drive the convergence of 

shared information. 

 

In the Herzio network, individuals can both 

invite others to be “friends” (friendship is 

reciprocal and must be accepted by the invitee), 

as well as listen to a selection of songs available 

to participants throughout the network. We 

study individuals linked by direct friendship, as 

well as those who are “friends of friends”, and 

measure the dynamic listening patterns of pairs 

of individuals over time. We find that closeness 

of the social tie predicts the rate of convergence 

of song preferences.  This effect occurs 

independently of normative influence via direct 

song recommendations.  

 

Moreover, not all friends are equal. For any 

individual, convergence occurs more quickly 

with the interests of some friends over others. 

Over the entire network, this “influence 

spectrum” is either normally distributed, or 

distributed normally with some friends exerting 

no influence on the preferences of the given 

individual. That is, the social network does not 

correspond to the preference network in a one-

to-one fashion: individuals follow some friends 

for some things, and ignore others altogether. 

 

Methods and Results 

 

We quantify preference across the entire 

network as the proportion of songs shared by 

any pair of individuals to the total unique songs 

listened to by the pair. Over time, preference 

increases: that is, normalizing initiation time and 

filtering for those who remain active over six 

months, the preferences of individuals converge 

more quickly initially and then more slowly.  

 

For each month similarity between two listeners 

was calculated as follows:  

 

               Preference = 
�∪!

�∩!
 

 
Where A and B represent the set of songs 

listened to by two listeners.  

 

We define pairs of “friends” as those with a 

direct friendship link, pairs of “length 2” as those 

pairs who share a friend but are not themselves 

friends, and so forth. There exist differential 

rates of convergence, depending on distance of 

social connection, and we use these differences  



to compare different aspects of social effects in 

an informational network. We find that the 

convergence of listening preference depends to a 

large extent on social distance. We test for 

significant differences in the rate of growth using 

a t-test, and find differences. 

 

The more closely one is linked to one’s social 

peers, the more musical tastes converge over 

time.  This convergence occurs without direct 

(normative) influence and controlling for events 

or publicity exogenous to the network, and 

supports that observed with other elective 

behaviors in social networks [Christakis & 

Fowler]. Indeed it is a more important effect 

than that of recommendations or of shared 

community (Figure 1).  

 

These results lend insight into the mechanism of 

social influence in networks of individuals who 

share information (here, listening patterns). 

Future work might consider the way in which a 

network restructures dynamically in response to 

changes in preferences. 

 

Figure 1: rates of convergence for shared listens 

of random links, members of the same 

community, friends who recommend to one 

another, and friends who don’t recommend to 

one another. The Random label indicates two 

users who are not friends. The Community label 

indicates two users in the same community but 

are not friends. Here, the community assignment 

was determined with the Walktrap algorithm 

with random walks of length 2 [Pons & Latapy, 

2005]. The Recommend label refers to users who 

are friends and recommend songs to each other. 

Lastly, the Friends label refers to friends who do 

not recommend songs to each other.  

 

Figure 2: rates of convergence of shared listens 

for pairs of individuals 1, 2, 3, 4, and 5 hops away 

from one another in the network, as well as 

individuals with who are not connected (defined 

as completely unconnected individuals and 

individuals 6 or more hops away from each 

other). 
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In	  recent	  years,	  mobile	  phones	  have	  enabled	  researchers	  to	  record	  the	  minute-‐level	  
behavior	  and	  interactions	  over	  hundreds	  people	  and	  many	  months.	  They	  have	  
hence	  enabled	  researchers	  to	  observe	  diffusions	  and	  test	  social	  dynamics	  models	  
with	  real-‐world	  face-‐to-‐face	  network	  data	  (Madan,	  Farrahi,	  Gatica-‐Perez,	  &	  Pentland,	  
2010).	  

We	  have	  developed	  a	  stochastic	  process	  model	  to	  describe	  the	  coevolution	  of	  
network	  structure	  (such	  as	  who	  talks	  to	  whom)	  and	  node	  state	  (such	  as	  preferring	  
Democratic	  vs.	  Republican),	  in	  a	  framework	  similar	  to	  physics	  models	  of	  social	  
dynamics	  (Castellano,	  Fortunato,	  &	  Loreto,	  2009).	  	  We	  use	  MCMC	  and	  variational	  
(Wainwright	  &	  Jordan)	  methods	  to	  fit	  the	  parameters	  of	  our	  model,	  and	  proceed	  to	  
answer	  questions	  such	  as,	  who	  is	  the	  most	  influential	  person,	  how	  widely	  
distributed	  the	  individuals’	  influence	  is,	  and	  how	  the	  individuals’	  states	  are	  
asymptotically	  correlated.	  Our	  model	  extends	  the	  influence	  model	  that	  was	  
developed	  in	  LIDS	  (Asavathiratham,	  	  	  	  Roy,	  	  	  	  Lesieutre,	  &	  	  	  	  Verghese,	  2001).	  

Specifically,	  we	  study	  a	  network	  with	  C	  nodes,	  each	  node	   	  taking	  state	  
from	   ,	  and	  each	  node	  c	  signaling	  node	   	  to	  change	  state	  with	  rate	   	  (i.e.,	  
node	   c	   has	   an	   influence	   	  over	   node	   ):	   Node	   c	   in	   state	   	  at	   time	   t	   can	  
signal	   node	   	  to	   change	   state	   to	   	  at	   time	   	  with	   rate	   ,	   where	  

.	   (i.e.,	   node	   c	   can	   distribute	   its	   influence	   	  into	   how	  much	   it	  wants	  
node	   	  change	   to	   each	   of	   the	   	  states).	   Hence	   the	   signaling	   rate	   of	   the	   whole	  
network	   is	   ,	   and	   the	   probability	   of	   a	   specific	   event	   is	  

	  when	  any	  signaling	  event	  happens	  at	  time	  t.	  The	  structure	  

of	  the	  network	  is	  different	  when	  its	  nodes	  are	  in	  different	  states.	  
	  So	  far,	  we	  have	  been	  able	  to	  confirm	  that	  the	  change	  of	  political	  opinions	  and	  body	  
weight	  is	  significantly	  related	  to	  the	  exposure	  to	  similar	  individuals	  (p<0.001	  in	  
both	  cases)	  but	  not	  to	  influence	  from	  self-‐declared	  friends	  or	  discussants.	  
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Overview 

The Friends and Family study in the MIT Media Lab is a long-term mobile phone-based experiment that 

transforms a graduate family community into a living lab for social science investigation. Data from this 

study, collected via Android-based phones equipped with our software platform for passive data collection, 

will be used to look at issues including individual and group identity, real world decision making, social 

diffusion, social health, and boundaries of privacy. In the talk we will briefly review the study, which has 

been running since March 2010, and update on the current status of the experiment, give an overview of 

our collected dataset, and  highlight some preliminary results. We focus our initial analysis on patterns 

surrounding mobile applications (apps), as well as the results of a social-mechanism based in intervention 

that we have conducted with the study population . The goal of this talk is to engage the WIDS community 

with discussion of discuss our approach of living-laboratory experiments, our platform for conducting such 

experiments, and the potential of the unique dataset we have already assembled.  

For the first analysis, we look at participants’ app installation patterns and investigate the roles of different 

networks, inferred from Bluetooth proximity and self-reported surveys, in the spreading of apps. We find 

that face-to-face interactions have a stronger correlation with the number of shared apps between 

individuals than self-perceived ties. By the time of the WIDS workshop we plan to have a more thorough 

analysis of these patterns as well as additional results from other components of the study. 

Introduction 

Today’s mobile phones are powerful computing and sensing platforms. We are investigating ways to help 
users leverage individual as well as aggregated data to improve their lives. Additionally, we are 
investigating how this data can contribute to the understanding of societal and especially community-
related issues. 

The Friends and Family study (FunF) is an experiment in the form of a living lab, with participants’ 
everyday behavior patterns sampled via mobile phones and other data collection mechanisms. The pilot 
phase of the study ran from March to July 2010 with 55 participants, and the expanded second phase of the 
study will begin in September 2010 with around 130 participants. The data collected pertains to both the 
physical and digital realms and includes information on face-to-face interactions, mobility, phone 
communication networks, and online social network activity. The study team also has direct access to the 
participants in the forms of questionnaires, interviews, and various experimental interventions, giving the 
FunF study access to a tight-knit physical community at an unprecedented scale and depth. Considering the 
study will run at least 18 months, the dataset generated from the study will shed light on a wide range of 
behavioral, social, and health-related topics.  

The study touches on many aspects of life, from social dynamics to health to purchasing behavior to 
community organization. The two high-level topics that unify these varied aspects are: (a) how people 
make decisions, especially the social aspects involved in decision making, and (b) how we can empower 
people to make better decisions using personal and social tools. 

Study Components 

The study is composed of four main components: 

Android Phone Sensing Platform (FunF System): This is the core of the study’s data collection. Android 
OS-based mobile phones are used as in-situ social sensors to map users’ activity features, proximity 
networks, media consumption, and behavior diffusion patterns. The phones are augmented with our  



software, which periodically senses and records information such as cell tower IDs;wireless LAN 
IDs;proximity to nearby phones and other Bluetooth devices; accelerometer and compass data; call and 
SMS logs; statistics on installed phone applications, running applications, media files, and general phone 
usage; and other accessible information. The system also supports integration of user-level apps, such as 
the alarm clock app we developed for additional data collection and potential use in interventions.  

Surveys: Each participant has to complete surveys at regular intervals, currently set at weekly and monthly. 
These include self reports about their perception of their social relationships, groups, and interactions, 
logging of various types of activities and mood, and standard scales that examine different personality traits 
and states (e.g. the Big Five Personality Test [4]). 

Purchasing Behavior: Information on purchases is collected through receipts and credit card statements 
submitted at the participants’ discretion. This component targets a specific set of categories: child-related, 
entertainment, and dining expenses. 

Facebook Data Collection Platform: Participants can optionally install a Facebook application to log 
different Facebook activities.  

Initial Analysis of Mobile App Installations
In the pilot study, the 55 participants have installed around 870 unique apps over a period of 3 months. (not 
counting any apps that come bundled with the phone or the OS version). We discovered that people who 
spend more time in face-to-face interaction are more likely to share common apps. In fact, in our dataset, 
pairs with face-to-face interaction share on average two more common apps on their phones compared with 
pairs with little face-to-face interactions (avg of 2.7 apps in common vs 4.9 apps in common in the latter 
case). Those face-to-face interactions might include group activities, religion-related interactions, time 
spent withsignificant others and many other possibilities.  However, we also observed that the self-reported 
friendships do not result in an increase in the number of common shared apps. We believe our results 
provide strong evidence on app diffusion patterns: apps do spread via socialinteraction. In particular, the 
diffusion of apps relies much more on the face-to-face interaction ties than the self-perceived friendship 
ties. Therefore, one should be cautious in using declared friendship networksto infer the spreading of smart-
phone apps and for applying viral marketing strategies, since the face-to-face interaction seems to have a 
stronger correlation with app diffusion. 

!

!

!

!

!

!

Social Mechanism Intervention
Between October – December 2010 we have conducted the "FunFit" game, an intervention aimed at 
investigating different motivation mechanisms relating to social health and wellness. The idea of FunFit 
was to test the effects of social capital (or social pressure, depending how it is viewed) for helping 
individuals achieve the goal of being more fit and active. Participants were divided into three groups based 
on different conditions, one group of participants received feedback on their own performance and were 
rewarded based on it, a second group was still rewarded based on the individual performance, but was also 
able to see the information about two other participants, while the third group saw the performance of two 
other participants and also were rewarded based on the peers' performance, and not their own. We will 
briefly mention some of the interesting initial results coming out of this intervention. 

(a) Group 1 Group2 

BT Co-Location Closeness Range [0,10] (10,2000] 

Mean #Common Apps / Pair 2.7253 4.9 

ANOVA: F=74.48, p<0.0000001 

K-S test: True, p=7.8e-19 

!

(b) Group 1 Group2 

Self Reported Closeness Range [0,1] (1,10] 

Mean #Common Apps / Pair 4.75 4.05 

ANOVA: F=4.97, p<0.026 

K-S test: True, p=0.0045 

Table 1: Summary results for (a) Bluetooth proximity 

closeness and (b) Self reported closeness.
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1 Abstract

The rapid expansion of “social network research” is an exciting and unique phe-
nomenon taking place in the last decade. Networks, from their essential defini-
tion, serve as an infrastructure for communication — either explicit (e.g. phone
calls or emails), implicit (e.g. social signals), or a combination thereof (e.g. on-
line social service such as Facebook or Flicker). As such, a fundamental aspect
that must be addressed in order to truly comprehend networks, is the particu-
lar way they interact with and influence information that flows through them.
Specifically, when addressing this issue, our goals should be threefold.

First, we must aspire for the understanding the underlying mechanisms that
control information flow in networks. This should be done by developing analytic
models that describe the properties (both local and global) of this process.

Second, using these models (or other methods that will be developed based on
them) to generate predictions concerning the evolution of information propaga-
tion processes. This may include for example the ability to predict the probability
that some trend or idea will epidemically spread throughout a given network, .
Another example would be the assessment of the openness of networks to the
proliferation and assimilation of new information or knowledge that are intro-
duced to them by some of their members.

Third, we are interested in developing techniques for efficiently intervening

in this process. For example, such intervention may take the form of external
stimuli that may be injected to the system in order to generate (or strengthen)
certain social links, and subsequently facilitate the assimilation of future infor-
mation that would be introduced to the network (i.e. the creation of “Shepherd
dogs”, that increase the cohesion of the network). Alternatively, by efficiently
recognizing the implicit “roles” of members of the network, certain members can
be engaged (e.g. by informative or monetary means) in a way that influence the
global behavior of the entire network (i.e. “Bellwethers” and “Trendsetters”).

In order to formally discuss the ability of a new idea or a new piece of
information to gain popularity over a network, we formally define two terms :
“appeal factor” and “persistence factor”, denoting an idea’s local spreading and
deletion expected probabilities, respectively. Using these terms we show that the
ability of an idea to epidemically spread throughout a network can be analytically 



predicting, resulting in a predictor that tightly thresholds between decaying and
prospering spread processes. We then demonstrate this method using several
datasets containing information for real world online social networks.

We then discuss the challenges that are involved with the implementation of
this technique, and suggest ways of overcoming them. Specifically, we propose
a way to generate fast-to-calculate local-information-based predictors that may
be able to approximate the results that can be achieved by a theoretical op-
timal algorithm. We conclude by presenting preliminary results concerning the
implementation of such methods using real world online social networks. 
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I. INTRODUCTION

We live in an increasingly interconnected world, one in

which a growing number of people turn to the web to make

important medical, financial and political decisions [1]. As

more people use the Web’s search engines daily as their

primary source for locating information on many important

issues, search engines are in the position to influence what is

perceived as relevant information through their mechanism

of ranking web pages. However, as studies have shown [2],

interested groups and individuals can also make use of web

spamming mechanisms to trick search engines in ranking

their pages higher than those of their rivals.

The battle for controlling the messages in cyberspace is

spreading over many ideological, cultural, and political is-

sues where controversial positions vie for the public support.

For example, consider issues such as abortion legality and

morality, children vaccination risks, creationism vs. evolu-

tion, homosexuality, etc. [3]. Nowhere this battle is more

obvious than when it comes to issues related to national

elections. Obviously, the stakes here are high. If one is able

to influence the public elect officials that will be favorable

to his/her agenda, this will have far-reaching implications.

The term “Web Spam” or Adversarial Web Search [4]

is broadly used to describe misinformation planted on the

Web. Google-bombs are probably the best known examples

of Web spamming, because of their broad coverage in the

press [5]. Web spammers are creating misinformation using

“text spam” and “link spam”, while using “cloaking” to

cover their tracks. This generic categorization of practical

actions does not explain why they are successful, or why

Google Bombs may or may not be be successful.

Recently, spamming techniques have been introduced in

Social Media [6], making it more appropriate to talk about

“Network Manipulation” rather than just Web spam. The

basic techniques of this manipulation, however, can be traced

in the long history of propagandistic techniques in society

[2].

In this presentation proposal we provide an overview of

the technical side of Network Manipulation, and discuss its

connection to Social Propaganda. Further, we describe how

it has been extended in the area of Social Media and discuss

some of its successes and failures when it comes to political

Ranking Techn. Net. manipulation Soc. Propaganda

Doc Similarity keyword stuffing glittering generalities

Site popularity link farms bandwagon

Page reputation mutual admiration societies testimonials

Anchor text Google bombs card stacking

Real-time search Twitter bombs plain folks

Table I
RANKING TECHNIQUES BY SEARCH ENGINES ARE LISTED ALONG WITH

THE RESPONSE OF THE WEB GRAPH MANIPULATORS AND THEIR

CORRESPONDING PROPAGANDISTIC TECHNIQUES.

issues, especially related to congressional elections. We end

with a discussion of what the search engines have said to

have done so far, and what is likely that they have done

without admitting it.

II. WHAT IS NETWORK MANIPULATION

Network Manipulation is the attempt to modify the Web

graph and/or a social network, and thus influence online

network tools in ways beneficial to the manipulators. The

modification of a network is in terms of altering its structure

and/or its contents. The online network tools that manipula-

tors try to influence are typically search engines and online

social media.

One can explain most of the major technological devel-

opments in the area of search engine technologies as their

attempt to stop the successes of Web Graph manipulators

(See Table I). For example, Google’s attempt to combat

link farms (groups of interlinked web sites controlled by the

same entity) with the introduction of the famous Page Rank

algorithm was countered by the introduction of “mutual

admiration societies” (organized groups of manipulators who

have achieved high reputation independently for unrelated

themes) [2]. In terms of propagandistic techniques, this

corresponds to “testimonials” often used by advertising

companies: A famous actor playing the doctor on TV urges

the audience to buy a particular pain killer, as if he is an

expert in medicine.

Each of the network manipulation techniques is imple-

mented with altering the structure or the contents of the

network’s components. For example, in creating mutual

admiration societies, the so-called “black hat” search engine 



optimization companies organize themselves exchanging

links [7]. To create Google bombs, they announce the terms

to be targetted as anchor text and the links to support,

sometimes even in the open [8], as we discuss next.

Ever since the appearance of the “miserable failure” hoax

that produced search results that included President George

W. Bush (and later, President Barack Obama [9]), Google

bombs have attracted a lot of attention in the media, since

they appear that with little effort, net manipulators can game

the sophisticated algorithms of the search engines. This

practice of “gaming” the search engines is implemented

with mislabeled anchor text techniques (corresponding to the

“card stacking” propagandistic technique; see Appendix??),

in which web site masters and bloggers use the anchor text to

associate an obscure, negative term with a public entity [10].

In particular, during the 2006 US midterm congressional

election, a concerted effort to manipulate ranking results in

order to bring to public attention negative stories about Re-

publican incumbents running for Congress took openly place

under the solicitation of the progressive blog, MyDD.com

(My Direct Democracy) [8].

Can these efforts be stopped? Search engines have tried to

counter this bad publicity by announcing initially a plethora

of features for ranking, and recently more sophisticated

algorithms than Page Rank [11]. These changes seemed to

bear fruits in the 2008 congressional elections where very

few spamming sites rose to the top of search results [12].

It appears, however, that these supposedly “new, sophis-

ticated” (and secret) algorithms would not scale: They are

likely pre-computed search results on a white-list of search

query terms that would likely be bombed.

In particular, these new features and algorithms appeared

to be highly effective in the announced launching of 98

Google bombs [13] during the 2010 congressional elections,

as we predicted [14]. Both in 2008 and 2010, searches

related to congressional candidates would bring up in the top

six results a ranked list of the same sources: one or more

of the campaign sites of the candidates, their official web

pages, their wikipedia page, and google images (Figure 1).

This was consistent across the candidates independently of

their visibility or of the fact that they were under attack

by thousands of political spammers. Moreover, the relative

location of each result in a period of 29 weeks remained

remarkably steady (Figure 2).

At the same time, they proved to be completely ineffective

in at least two examples of network manipulation that

were under their radar screen: The Decor-My-Eyes site [15]

that successfully used bad publicity to rank high, and the

JCPenney case [16] that used anchor text manipulation of

link farms. After these cases became known, their relative

position changed dramatically moving downwards by dozens

of locations per day.

These counter examples provide strong evidence that we

are not talking about new sophisticated algorithms in effect,

Figure 1. Percentage of times a site appeared in a particular position in
the top-10 search results.

Figure 2. Relative change in position of collections of sites during the 29
week period preceding the 2010 congressional elections.

but for old-fashion, hand-crafted list of blacklisted sites and

white-listed terms.
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III. APPENDIX: ON PROPAGANDA THEORY

We offer here a brief introduction to the theory of propaganda
detection. For more information, see [2].

There are many definitions of propaganda, reflecting its multiple
uses over time. One working definition we will use here is

Propaganda is the attempt to modify human behavior, and thus
influence people’s actions in ways beneficial to propagandists.

Propaganda has a long history in modern society and is often
associated with negative connotation. This was not always the case,
however. The term was first used in 1622, in the establishment
by the Catholic Church of a permanent Sacred Congregation de
Propaganda Fide (for the propagaton of faith), a department which
was trying to spread Catholicism in non-Catholic Countries [17].
Its current meaning comes from the successful Enemy Propaganda
Department in the British Ministry of Information during WWI.
However, it was not until 1938, in the beginning of WWII, that
a theory was developed to detect propagandistic techniques. For
the purposes of this paper we are interested in ways of detecting
propaganda, especially by automatic means.

First developed by the Institute for Propaganda Analysis [18],
classic Propaganda Theory identifies several techniques that pro-
pagandists often employ in order to manipulate perception.

• Name Calling is the practice of giving an idea a bad label.
It is used to make people reject and condemn the idea
without examining the evidence. For example, using the term
“miserable failure” to refer to political leaders such as US
President George Bush can be thought of as an application
of name calling.

• Glittering Generalities is the mirror image1 of name calling:
Associating an idea with a “virtue word”, in an effort to
make us accept and approve the idea without examining the
evidence. For example, using the term “patriotic” to refer to
illegal actions is a common application of this technique.

• Transfer is the technique by which the propagandist carries
over the authority, sanction, and prestige of something re-
spected and revered to something he would have us accept.
For example, delivering a political speech in a mosque or a
church, or ending a political gathering with a prayer have the
effect of transfer.

• Testimonial is the technique of having some respected person
comment on the quality of an issue on which they have
no qualifications to comment. For example, a famous actor
who plays a medical doctor on a popular TV show tells the
viewers that she only uses a particular pain relief medicine.
The implicit message is that if a famous personality trusts the
medicine, we should too.

• Plain Folks is a technique by which speakers attempt to
convince their audience that they, and their ideas, are “of the
people,” the “plain folks”. For example, politicians sometimes
are seen flipping burgers at a neighborhood diner.

• Card Stacking involves the selection of facts (or falsehoods),
illustrations (or distractions), and logical (or illogical) state-
ments in order to give an incorrect impression. For example,
some activists refer to the Evolution Theory as a theory
teaching that humans came from apes (and not that both apes
and humans have evolved from a common ancestor who was
neither human nor ape).

• Bandwagon is the technique with which the propagandist
attempts to convince us that all members of a group we
belong to accept his ideas and so we should “jump on the
band wagon”. Often, fear is used to reinforce the message.
For example, commercials might show shoppers running to
line up in front of a store before it is open.

The reader should not have much trouble identifying additional
examples of such techniques used in politics or advertising.

1Name calling and glittering generalities are sometimes referred to as

“word games.” 
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I. INTRODUCTION

One of the first online social networking (OSN) sites was

SixDegrees. Since its launch in 1997, there have been a

wide range of OSN sites targeting different interests[1]. We

can find OSN sites for business connection, dating, photo

sharing, video sharing, music broadcasting, microblogging,

mainstream network, bookmarking, etc. These are just some of

many OSN sites that build their themes based on their users’

social network. Today, two of the most popular OSN sites are

Facebook and Twitter; Facebook has more than 500 million

active users and Twitter has more than 105 million registered

users[2].

OSN sites have revolutionize way we communicate and

share information. For instance, 5,000 status updates1 were

posted on Twitter in 2007. However, the average number

of status updates per day increased dramatically during the

next few years. The 300,000 status updates in 2008 rose

to 2.5 million the following year, and after that 35 million

at the end of 2009. But by just the beginning of 2010,

there were 50 million status updates. In other words, there

were 600 status updates being posted every second. This

number can only increase as more and more people adopt this

communication medium. 96% of the Millennial generation,

an amount estimated to be 80 million people, have already

joined a social networking site[3]. A study conducted between

October 2008 and February 2009 by Inside Facebook[4] shows

that the fastest growing demographic on Facebook is women

who are 55 years of age, with the growth rate being 175.3%.

This is an indication that OSN sites are being embraced by

many different age groups as a way to communicate.

Even though online social networking sites have been

thoroughly integrated into our everyday lives, some people are

still sceptical about sharing their personal information online

because of insufficient privacy and security features. The main

goal of our research is to create a privacy management system

that only allows for a specified set of a user’s friends/followers

to have access to the user’s status updates. In this paper,

we explore how to find a socially relevant set of a user’s

followers. We make the assumption that social relevance can

be defined by the number of messages that are exchanged

between two different parties: the more messages that are

exchanged, the closer the social relevance between the two

parties is. However, the question that remains is what other

1On Twitter network, status updates are called tweets.

attributes can help to define social relevance? Here we will

analyze two attributes activity matching and vocabulary usage

similarity matching between users and their followers.

II. METHODOLOGY

To find attributes that can define social relevance, we

analyze activity and vocabulary usage between users and their

followers. First, we rank followers based on social relevance,

which is defined by the number of exchanged messages.

Second, we find activity patterns for users and their followers,

ranking the followers from the ones who have the most

similar activity pattern with the users who have the most

dissimilar activity pattern. For vocabulary usage, we also rank

the followers based on vocabulary similarity to their users’

vocabulary of words. Finally, we compare the result of the

social relevance ranking with the activity pattern ranking and

vocabulary usage similarity.

A. Activity Pattern Analysis

Activity patterns are analyzed in three time domains: hour,

week, and month. Hour, week, and month domains are divided

into 24, 7, and 12 sub time intervals. On each time interval,

the average number of status updates is calculated to represent

the activity pattern.

For the next step, we interpolate each activity pattern and

give a score to each follower based on how closely matched the

follower’s activity pattern is with their user’s activity pattern.

Finally, we rank the followers based on the score and compare

the ranking with the social relevance ranking. Detailed study

on this work is in [5].

B. Vocabulary Usage Simiarity

We use the cosine coefficient approach to analyze vocabu-

lary usage similarity (VUS) between users and their followers.

Some advantages of the cosine coefficient approach are that

it eliminates negative vector terms and handles non-binary

values.

To apply the cosine coefficient, we first create the vector

space of common vocabulary of words used between a user

and each one his/her followers. Next, each term words in the

vector space (1) is multiplied by importance of each term

word:

Ti = w1 ∗W1 + w2 ∗W2 + ....+ wn ∗Wn (1)



Based on Zipf law of vocabulary frequency distribution,

the importance of a term is defined by the frequency of a

word in the vocabulary; if a word used a high frequency, the

importance of the word is small. The importance of term is

calculated by transforming normalized word frequency:

wi = exp

−

vi
∑

n

j=1
vj

(2)

, where vi is vocabulary frequency.

Same as activity pattern analysis, we rank all followers of

a user based on VUS and compare the results with the social

relevance ranking. The result is shown in the next section.

III. DISCUSSION OF RESULTS

To evaluate activity pattern analysis and vocabulary usage

similarities, we compare both of the result rankings with social

relevance ranking:

RD(Ui) =| SRR(Ui)−ResultR(Ui) | (3)

, use a histogram of rank differences (RD) between users

positions on the social relevance ranking (SRR) and users’

positions on either activity pattern ranking (APR) or vocabu-

lary similarity ranking (VSR). If a follower is ranked similarly

on both SRR and APR, their differences should be fairly low.

In Eq. 3, taking the absolute value of the result is optional.

In this study we use two set of data: one set consists of

3,652,148 status updates and 2,312 users and followers. The

second data set is provided by the Microsoft Research Project2.

A. Activity Pattern Ranking

The rank difference histogram of SRR and APR is shown

on Fig. 1. It shows that a significant portion of the followers

are ranked similarly on both rankings (the difference is close

to zero), suggesting that the activity pattern analysis could

provide a useful attribute to define social relevance between

users and their followers.

B. Vocabulary Similarity Ranking

The cumulative result of rank difference between SRR and

VSR is shown in Fig. 2. From the result, we can observe that

there is a pattern of increasing frequency as we move close to

zero on X-axis. It indicates that there is a positive correlation

between common vocabulary usage and social relevance.

IV. CONCLUSION AND FUTURE WORK

Online social networking has become popular among all

generations. It is used for broadcasting and sharing informa-

tion. Even though it is an efficient method of communication,

there are still some privacy issues involving who on the

social graph is able to view what information. Existing social

networking sites are lacking in the privacy control needed

to manage this. One approach is to find socially relevant

followers with whom users want to share their information.

In this preliminary study, we delve into non-obvious ways

to define social relevance, and we discover that the activity

2http://research.microsoft.com/downloads

Fig. 1. This histogram demonstrates the difference between the APR and the
SRR. A difference of 0 means that both rankings are the same for a particular
follower, while a large difference signifies very different rankings. The X-
axis represents the difference measurement, while the Y-axis represents the
number of users with that difference measurement. It is evident that ranking
methods correlate fairly well, with a large portion of users retaining a small
difference measure.

Fig. 2. Cumulative result of ten users who have the highest number of
conversations in the corpus. X-axis represents the difference between RSS
and VSR, and Y-axis represents frequency of the difference.

pattern and vocabulary similarities can be good representatives

to define social relevance between users. The result of both

attribute studies shows that there are positive correlations. In

our future work, we will explorer more ways to find social

relevance and combine different attributes to reduce RD (Eq.

3).
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Abstract—In this paper, we present a method to classify
different social network actors such as leaders (e.g., news groups),
lurkers, spammers and close associates with a context-dependent
approach in Twitter domain. This method is a two stage pro-
cess with a fuzzy-set theoretic (FST) approach to evaluate the
strengths of network links (actor-actor relationships) followed by
a simple linear classifier to separate the actor classes. Since the
method uses mostly contextual information such as actor profiles
etc., it may be termed as a context-dependent approach. The
research was conducted on a Twitter database of 441234 actors,
2045804 links, 6481900 tweets, and 2312927 total reply messages.
This context-dependent analysis reveals strong clustering of actor
data based on their types, and hence can be considered as a
superior approach when data available for training the system
is abundant.

I. INTRODUCTION

Recent years have witnessed a proliferation of social

networks with popular applications such as Twitter, Flickr,

YouTube, LiveJournal, Orkut, and Facebook. With this rapid

pace of growth in social networks (SN), there has also been

a growing interest in the Internet research community in the

SN analysis to address various aspects of social networking

issues.

As a step towards addressing the problem of SN privacy,

we present the classification algorithms for the problem of

identification of types of actors (individuals or organization)

in a twitter network. We categorize the twitter actors into 4

types: a) Leaders, who start tweeting, but do not follow any

one there after, though they could have many followers, b)

Lurkers, who are generally inactive, but occasionally follow

some tweets, c) spammers, the unwanted tweeters, also called

as twammers, and d) close associates, including friends, family

members, relatives, etc. A context-dependent classification ap-

proach proposed here to addresses this problem for situations

where an abundant amount of tweet data is available; here

we employ a fuzzy classification scheme in contrast to the

stochastic estimation methods [1].

We present in Section II our approach to context-dependent

classification of twitter actors. In Section III, details of ex-

perimentation and results are presented. Finally, summary and

conclusions are presented in Section IV.

II. CONTEXT-DEPENDENT CLASSIFICATION

Social networks are formed by social groups of people that

are linked by social bond or relationship. In a group, one can

follow another or one can be followed by the other. In the twit-

ter jargon, those two types of individuals are called followers

and followees, respectively. Unlike in the case of emails, the

mutual relationships between individuals/groups in the twitter

network can be tracked by monitoring the tweets. Even though

it is possible to compile email message and response pairs,

the sparseness of data there makes it difficult to estimate the

strength of relationship between the corresponding individuals.

In the twitter (generally, SN) domain, it is possible to estimate

the SN link (relationship) strengths by using the followee-

follower message statistics.

Since most of the tweets occur between close associates, the

twitter data for this group is generally overabundant compared

to the other three groups, and this data imbalance poses

problems for an identification of the actors, particularly those

belonging to sparsely populated classes. Hence, we follow a

two stage process. In the first stage, we estimate the strength

of links in the social network and eliminate a large number

of actors with strong social bond as they naturally classify

into the group of close associates. Then, in the second stage,

we perform a linear classification of the four actor types

mentioned in Section I, using number of tweets and the

followee-follower ratio as two features considering only those

tweeters with weak link strength (less than 15% of maximum

strength) between them.

Fig. 1. Proposed Fuzzy System Architecture for Link (Relationship) Strength
Evaluation

In the first stage, we focus exclusively on the fuzzy method-

ology, and do the implementation using jFuzzyLogic [2],

an open source code in the Java language for the fuzzy

control language (FCL) defined by the International Elec- 



trotechnical commission (IEC)’s standard 1131-7 [3]. Three

parameters “Reply Message Percentage”, “Common Follower

Percentage”, and “Normalized Mean Reply Delay” have been

considered as indicators of the keenness with which a tweeter

is followed, and hence used to constitute the input set of our

system depicted in Fig. 1.

TABLE I
CUMULATIVE TWITTER DATABASE STATISTICS

Actors Links Tweets Messages Tweet Replies

441234 2045804 6481900 2312927

III. EXPERIMENTAL RESULTS

A. Data Collection Procedure

The main requirement for this research is availability of a

good data set that includes details of all the activities in the

twitter network. Therefore an efficient crawling program was

written to collect data from the live twitter network. Table I

summarizes the statistics of this database. However, since it is

difficult to visualize such a huge network, we show only the

results of 500-node subnet in subsection III-B.

(a) Connectivity of a 500-node
twitter network with all Links
shown.

(b) Connectivity of the twitter net-
work with only links having rela-
tionship strength above 15%.

Fig. 2. Changes in twitter network clustering with thresholding of links

Fig. 3. Linear Separation of Leaders, Lurkers, Associates, and Spammers

B. Results on Link Strength Determination and Context-

Dependent Classification

We determine the link strengths of a 500-node twitter net-

work by applying the fuzzy logic based classification method

discussed in Section II. This sub-network is visualized in

Fig. 2. First, it can be observed that the network nodes form

strong clusters, and the cluster structures don’t change much

when weak links are removed; this indicates that the same set

of tweeters communicate frequently with one another though

some are more involved than the other in tweeting. Next, since

it is easy to infer that the tweeters with strong connectivity

are close associates, we need to apply our classification to the

tweeters with low relationship strength. From the Fig. 2(b), it

is clear that a threshold of 15% for the link strength, is good

enough to separate out the tweeters who are unambiguously

close associates. Hence, we apply the simple linear classifi-

cation algorithm using number of tweets and the followee-

follower ratio as two components of the pattern vector only

to the tweeters with the link strength below this threshold.

Clear separation of the four tweeter classes as depicted in

Fig. 3 suggests that this method holds promise for an effective

identification of leaders, lurkers, spammers, and associates. For

validation, we hand-labeled these records by going through the

profile information and the tweets contents. By considering

the hand labels of the records as the ground truth, we tally the

results of linear classification on the validation set with the

ground truth. Validity of our classification approach has been

established by a perfect tally.

IV. SUMMARY AND CONCLUSION

In this paper, we present a classification method for twitter

network actor identification. It employs a fuzzy logic approach

to estimate inter-actor relationship strengths in the first step

and then a linear classifier to separate out the four actor

classes.

This research enforces the conventional wisdom that spam-

mers follow a large number of people (followees), but they

themselves are followed by very few people. Specifically, as

evidenced from the results of Section III-B, spammers are

defined by the accounts that make more than 10,000 tweets

in a 10-day interval (or equivalently over an average of 1000

tweets a day) and have a followee-to-follower ratio of 1.5

to 1 or more. The twitter leaders, on the other hand, can

be distinguished by their high rate of tweeting, large number

of followers, but a few, if any, followees, and hence by a

followee-to-follower ratio much below 1. Close associated

are marked by strong connectivity to their followers, low

to moderate number of tweets (1000) per day, and small to

moderate (less than 3) followee-follow ratio. Finally, lurkers

is a rare class of tweeters, who follow many people, but they

themselves rarely post or reply any tweets.
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That’s What (Best) Friends Are For∗
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Over the last decade, the burgeoning networks research community has paid considerable at-
tention to structural properties of social networks. Such properties—triadic closure, heavy-tailed
degree distributions, small-world phenomena, and homophily, to name just a few—have proven to
be remarkably robust in newly accessible large-scale data on networks. Of course, untangling the
causes of these apparently ubiquitous properties from the data is harder. What behavioral mecha-
nisms lead to these structural facts? And what we can infer about individuals’ views of friendship
from these structural phenomena?

In recent work with two evolutionary psychologists (Peter DeScioli and Robert Kurzban) and
two computer scientists (Elizabeth Koch and me), we have been addressing questions about how
people choose friends and prioritize among those friends. (The deepest question stemming from
the evolutionary psychology perspective is, simply: why do people have friends at all?) For our
analysis, we collected a large sample of about 10 million profiles from the MySpace social network.
Most MySpace users have a Top Friends module in their profiles, in which an individual selects
a small subset (usually eight) of his or her friends and organizes them into a ranked order of the
individual’s choice. These rankings allow the exploration of finer-grained distinctions among social
relationships: not just “is Alice a friend of Charlie?” but instead “does Charlie rank Alice higher
or lower than he ranks Bob?”

Different classes of behavioral hypotheses give rise to very different graph-theoretic structures in
the best-friend network. We discover that the MySpace best-friend network is most consistent with
the class of hypotheses in which an individual’s relative ranking of two candidate friends is tied to
some measure of the individual’s dyadic relationship with those two candidates, rather than some
measure of the monadic quality of the candidates themselves. For example, an individual tends
to prefer the candidate friend who is geographically closest to the individual. But an individual
tends to prefer the candidate who is globally less popular than another candidate, suggesting that
qualitatively different dynamics than preferential attachment are at play in best-friend networks.
Our best predictor of whether Alice or Bob will be named by Charlie as his best friend is how
highly Alice and Bob rank Charlie. This observation provides support for alliance hypotheses (“we
have friends so that they will take our side in a potential conflict”) about the ultimate explanation
for why we have friends at all.

∗Supported in part by NSF grant CCF-0728779. Nearly all of this research was performed jointly with Peter
DeScioli, Elizabeth N. Koch, and Robert Kurzban; those results are reported in “Best Friends: Alliances, Friend
Ranking, and the MySpace Social Network,” Perspectives on Psychological Science 6(1):6–8, January 2011. 
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We investigate the effectivity of family policies in the context of the structure of a society. We
use an agent based model to analyse the impact of policies on individual fertility decisions and on
fertility at the aggregate level. Our results indicate that both fixed and income dependent child
support have a positive and significant impact on fertility. In addition, the specific characteristics
of the social network and social influence will not only relate to fertility but also influence the
effectivity of family policies. Policymakers aiming to adapt a specific policy mix that has proved
successful from one country to another one ignoring differences in the social structure may fail.
Family policies can only be successful if they consider the characteristics of the society they are
assigned for.

We aim to resolve the confusion and disagreement about the effectivity of family policies
by explicitly adressing their direct and indirect effect on fertility. The direct effect eases the
load of having children for instance by providing institutional childcare or financial benefits.
The indirect effect rests on the assumption that many people imitate or consult their friends,
siblings, or parents in choosing their intended fertility. Policies causing a modest effect on fertility
at the individual level may have a large impact at the macro level due to such peer effects.

The crucial features of our model are the agents’ heterogeneity with respect to age, income,
parity, and intended fertility, the social network which links the agents to a small subset of the
population and the influence mechanism acting via that network. We use data from the Gender
and Generation Survey (GGS) to estimate the distribution of the desire for children given the
agents age and parity. We define the probability πm

i that agent i wants at least m additional
children and use the logit model

logit(πm
i ) = βm

0 + βm
1 xi + βm

2 pi (1)

for each m to estimate the according probabilities for the agent population.
The agents own consumption, ci,t, is assumed to be a concave function of household income,

ci,t = σ
√
wi,t, the consumption level of ni,t children isc

(ni,t)
i,t = ni,t τ

√
wi,t. and the disposable

income becomes yi,t = wi,t − ci,t − c
(ni,t)
i,t . If intended fertility exceeds actual parity,

fi,t > pi,t, (2)

and the disposable income is equal or greater than the costs of an additional child,

yi,t ≥ τ
√
wi,t ⇐⇒

√
wi,t ≥ σ + (ni,t + 1)τ, (3)

the agent is exposed to the biological probability (fecundity) of conception. In case of a live
birth a new agent is generated. After the child’s transition to adulthood the new adult agent
gets assigned her income level zi determining her household income wi,t = wi,t(zi, xi,t), her social

1 



network, and her fertility intentions. Thereafter she evaluates her fertility intentions with respect
to (2) and (3).

The policy maker may provide a mix of fixed family allowances, bf , and benefits proportional
to income, bvwi,t. Then, the necessary condition for an additional child becomes

√
wi,t ≥ σ + (ni,t + 1)

(

τ −
bf

√
wi,t

− bv
√
wi,t

)

.

The agents are linked to a set of agents with whom they communicate about their fertility
intentions and realisations. We refer to this group as an agent’s social network or peer group.
The similarity of agents’ characteristics has an impact on the probability of being chosen into an
agents social network. Moreover, we assume a certain degree of network transitivity or clustering,
i.e. the tendency that two agents who are connected to a common third party establish a mutual
relationship over time. Each agent i has an intended fertility fi,t, defined as the sum of current
parity pi,t and the intended additional children which may be altered due to social influence
imposed by the peer group. We assume that with probability pr3 (pr4) intended fertility increases
(decreases) due to the influence exerted by a peer with parity greater (less) than the agents
intended fertility. Then, we compute π+

i (π−i ), the number of agents j who are linked to i with
parity greater (less) than the intended fertility of agent i, i.e. pj,t > fi,t (pj,t < fi,t) to obtain
the probabilities to be positively or negatively influenced by at least one agent from the peer
group, p+i,t = 1− (1− pr3)

π+
i and p−i,t = 1− (1− pr4)

π−
i . The probability of being only positively

(negatively) influenced becomes (1−p−i,t)p
+
i,t (respectively (1−p+i,t)p

−
i,t) and the probabiliy of being

positively and negatively influenced is p+i,tp
−
i,t. Then, the probabilities to increase, decrease, or

keep the intended fertility constant are

pi(fi,t+1 = fi,t + 1) = (1− p−i,t)p
+
i,t + γp+i,tp

−
i,t

pi(fi,t+1 = fi,t − 1) = (1− p+i,t)p
−
i,t + (1− γ)p+i,tp

−
i,t

pi(fi,t+1 = fi,t) = (1− p+i,t)(1− p−i,t) .

These adaptations of fertility intentions capture the indirect effect of family policies.
We run the simulation model for 100 time steps (years) with a fixed set of parameters and

record completed cohort fertility, intended fertility, and the fertility gap (the difference between
intended and completed cohort fertility) on the aggregate level. Afterwards we generate another
initial population and run the simulation again with a different set of parameters. We study the
impact of fixed and income dependent family allowances on intended fertility, on the realisation
of intended fertility and on the resulting completed cohort fertility. In particular we investigate
whether the structure of a society represented by parameters specifying the social network and
the social influence mechanism has the potential to alter the role of family policies.

Our simulations reveal a positive impact of both fixed and income dependent family al-
lowances on completed cohort fertiliy and on intended fertility and a negative impact of fixed
and income dependent child support on the fertility gap. However, several network and social
influence parameters have the ability not only to influence fertility itself but also to influence the
effectivity of family policies, often in a detrimental way. For instance, while a higher degree of
homophily among network partners has a positive effect on fertility (intentions and realisations),
family policies may be less effective in such a society.

We further conclude that empirical cross-country comparisons of different types of family
policies need to be interpreted with caution for two reasons. Firstly, the empirical impact of
a certain policy depends on the subset of policies investigated and comprehensive experiments
taking into consideration any possible policy mix are not feasible in the real world. Secondly,
many empirical studies do not account for differences in the social structure in the countries
under consideration.
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How do people choose a leader for their group? Traditional models of leadership have 

recently been challenged by a growing sentiment that they failed to completely represent and 

understand the complex, dynamic, distributed, and contextual nature of leadership (McKelvey, 2008; 

Uhl-Bien & Marion, 2009). The model of shared, or distributed, leadership goes in such direction as 

it envisions “leadership as an emergent property of a group or network of interacting individuals” 

(Bennett, Harvey, Wise, & Woods, 2003: 7). Shared leadership assumes that leadership does not 

reside in a single individual but can be “dispersed among some, many, or maybe all of the members” 

(Gronn, 2002: 429). It is an emergent team property that results from the distribution of leadership 

roles and activities across team members, allowing the possibility for multiple leaders to emerge 

(Carson, Tesluk, & Marrone, 2007; Mehra, Smith, Dixon, & Robertson, 2006).  Shared leadership 

can be represented as a network of leadership perceptions (hereafter “leadership network”) in which 

nodes and arrows symbolize individuals and leadership nominations/perceptions respectively 

(Carson et al., 2007; Mehra et al., 2006). If assessed over time, a dynamic leadership network 

captures the emergence of shared leadership within a group or organization.  

 The objective of this paper is to introduce an innovative methodology capable of performing 

a dynamic assessment of leadership networks, a none-trivial exercise impossible to realize until 

recently. Thanks to new advances in social network techniques, it is now possible to conduct a 

longitudinal analysis on leadership networks by specifying actor-oriented models (Snijders, 2005, 

2009). Actor-oriented models were conceptualized to statistically assess how social networks evolve 

over time (Snijders, 2005, 2009; Snijders, van de Bunt, & Steglich, 2010), and are run using the 

software SIENA (Simulation Investigation for Empirical Network Analysis; Ripley & Snijders, 2010). 

SIENA models were developed for a variety of longitudinal networks. Empirical studies count 

investigations on the effects of the Big Five personality traits on longitudinal friendship networks 

(Selfhout et al., 2010), the evolution of interorganizational networks (van de Bunt & Groenewegen,  
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2007), dynamic advice networks (Lazega, Mounier, Snijders, & Tubaro, 2010), and the reciprocal 

effects of self-view as a leader and leadership emergence (Emery, Daniloski, & Hamby, 2011). This 

methodological and analytic strategy has the potential to rise our understand of the emergence of 

shared leadership in group as it captures the complex and dynamic process of leader emergence, 

simultaneously captures different levels of analysis - the individual, the dyad, and the group (Livi, 

Kenny, Albright, & Pierro, 2008), combines different leadership theories (leader-centered, follower-

centered, similarity-hypothesis, and relational leadership) in the same analysis, and statistically tests 

for the processes hypothesized to impact the evolution of leadership networks. As an illustrative 

example, this paper provides an exploratory study designed to explore the role of narcissism on the 

evolution of two types of leadership networks: task versus relationship oriented leadership.  

 

 

 

  



Using Metrics to Enable Large-Scale Deliberation
Mark Klein

MIT Center for Collective Intelligence

m_klein@mit.edu

Humanity now finds itself faced with a range of highly complex and controversial challenges –

such as climate change, the spread of disease, international security, scientific collaborations, 

product development, and so on - that call upon us to bring together large numbers of experts and 

stakeholders to deliberate collectively on a global scale. Collocated meetings can however be 

impractically expensive, severely limit the concurrency and thus breadth of interaction, and are 

prone to serious dysfunctions such as polarization and hidden profiles (Sunstein 2006). Social 

media such as email, blogs, wikis, chat rooms, and web forums provide unprecedented 

opportunities for interacting on a massive scale, but have yet to realize their potential for helping 

people deliberate effectively, typically generating poorly-organized, unsystematic and highly 

redundant contributions of widely varying quality. Large-scale argumentation systems represent 

a promising approach for addressing these challenges, by virtue of providing a simple systematic 

structure that radically reduces redundancy and encourages clarity. They do, however, raise an

important challenge. How can we ensure that the attention of the deliberation participants is 

drawn, especially in large complex argument maps, to where it can best serve the goals of the 

deliberation? How can users, for example, find the issues they can best contribute to, assess 

whether some intervention is needed, or identify the results that are mature and ready to 

“harvest”? Can we enable, for large-scale distributed discussions, the ready understanding that 

participants typically have about the progress and needs of small-scale, collocated discussions?

This paper will address these important questions, discussing (1) the strengths and limitations of 

current deliberation technologies, (2) how argumentation technology can help address these 

limitations, and (3) how we can use attention-mediation metrics to enhance the effectiveness of 

large-scale argumentation-based deliberations.



    Sarah M. G. Otner, Sarah.Otner@post.harvard.edu 
London School of Economics (LSE), UK 

“Emerging Expertise: Status and Influence in Electronic Networks of Practice” 
 

Leadership is the exertion of influence in order to “guide, structure, and facilitate relationships in 
a group,” (Yukl, 1998, p. 3).  Traditional leadership originates from formal position or designated 
authority.  In contrast, “distributed leadership” derives from a “broader, mutual influence process 
independent of any formal role or hierarchical structure and [as] diffused among the members of any 
given social system,” (de Rue & Ashford, 2010, p. 627).  Such “emergent” leadership is earned from 
followers through incremental contributions and accumulated influences (cf. Yoo & Alavi, 2004).  Given 
that leadership intrinsically incorporates such patterns of unequal influence, deference, and respect, and 
that those observable patterns are status structures (Ridgeway & Walker, 1995), then leadership 
inherently involves status differentiation (Ridgeway, 2004).  Mastering this process of distinguishing 
individuals according to their status characteristics is fundamental to understanding how individuals gain 
influence and then emerge as leaders in organizations.   

In organization studies, the literature concerning communities of practice (CoP; Brown & 
Duguid, 1991) provides a foundation for understanding distributed leadership  and new organizations.  
Computer-mediated communication has produced hybrid community-networks, or “electronic networks 
of practice” (ENoP).  ENoP are “computer-mediated social spaces where individuals working on similar 
problems self-organize to help each other and share knowledge, advice, and perspectives about their 
occupational practice or common interests,” (Wasko, Teigland, & Faraj, 2009, p. 254).  ENoP can be a 
significant value driver for an organization; “these types of institutions are especially important for 
promoting value by creating ‘new combinations’,” (Moran & Ghoshal, 1996, p. 42).  Indeed, the 
management of ENoP is “a delicate and highly strategic internal capability” (Kane, 2009, p. 41) and a 
“core competency” (Gilbane Group, 2008).  Therefore, a primary motivation is to discover how 
individuals emerge as leaders in ENoP, and also the consequences of the same. 

Previous research (cf. Organisciak, 2009; Brabham, 2008b; Nov, 2007; Lakhani & Wolf, 2005) 
has demonstrated that direct financial gain is not prominent among reasons that individuals contribute to 
online communities; however, many of the other drivers – including improvements to personal reputation, 
achievement of status, and particularly career advancement – facilitate indirect financial gains.  
Considering these motivations reveals a core problem of applying extant literature to this novel context.  
From a generalized exchange perspective, the community relies on both the signaling and the sanctioning 
functions of reputation in order to keep individuals contributing.  In contrast, from a resource perspective, 
individuals have no incentive to amass reputation ad infinitum if they cannot or do not avail of it. 
Therefore, it is central to understand how individuals “spend” their reputations to achieve status and, 
subsequently, to wield influence.  Indeed, disentangling these “overlapping but partially autonomous” (de 
Cremer & Sedikides, 2008, p. 66) constructs is a priority of current network research (see discussion in 
Wong & Boh, 2010).  The present research contributes to the “burgeoning literature on legitimacy, 
reputation, and status in management research” (Bitektine, 2011, p. 152; Morrison, 2010) through 
examining status construction and characteristics in a new organizational form, the ENoP.  
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Research Questions 

• Why, how, and on whom is status conferred in ENoP? 

• How do high status individuals gain influence, and of what form? 

• What are the consequences of that influence – for individuals, for the network, and for the 
organization? 

 

Keywords: Online Communities / Networks of Practice, Status, Influence, Emergent Leadership 
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TEMPORAL DIMENSIONS OF ORGANIZATIONAL NETWORK STABILITY: 
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Organizational network research focuses on the patterns of stable, long-term 

relationships. This long-term perspective has proven useful in order to examine the 

unfolding of social processes that are stable over time. Yet, many organizations face 

environments that require them to adapt and change over very short periods of time. 

These short-term changes are usually not captured in organizational network analysis, 

and the literature is silent on how they may relate to long-term network stability or to 

organizational stability. In this paper, our aim is to broaden our understanding of the 

temporal dimension of network processes. We argue that stable social processes exist 

in different time frames, ranging from short to long-term, and are not subsumed into

long-term processes. Specifically, we focus on reciprocity, centralization and

closure, and the different time frames in which they can be embedded. Using the 

example of the e-mail communications patterns of two project teams, we examine the 

temporal dynamics of organizational networks by considering short-term regularities 

in interaction structures as well as regularities observed over longer periods. We use 

the recently developed Relational Event Model to examine these network processes 

over multiple overlapping time frames using continuous data (without the need for 

cross sectional aggregation). Our results show that team interaction structures exhibit 

regularities not only in the long-term, but also in the short-term, thus demonstrating 

that stability is not confined to long-term social interactions. For instance, closure has

a strong propensity to have regular occurrences in the short term, which reveals a 

form of coordination that is temporally bound and goes beyond the traditional 

transitivity argument. We discuss the role of interaction regularities across different 

timescales in maintaining stability and flexibility in organizations as well as 

implications for organizational network research. 

Key terms: Stability and Flexibility, Organizational networks, Temporal dimensions, 

Social structure in teams, Sequences of interactions. 



Social learning and the dynamic cavity method

Yashodhan Kanoria∗, Andrea Montanari† and Omer Tamuz‡
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Abstract

In many contexts, agents ‘learn’ behavior from interaction with friends/neighbors on a net-
work. We call this phenomenon ‘social learning’. We will focus on models of repeated interaction,
with agents ‘voting’ in a series of rounds on some issue of interest. Votes in the initial round
are based on ‘private signals’, whereas votes in future rounds incorporate knowledge of previous
votes cast by friends.

We consider two different models of iterative learning. A very simple model is ‘majority
dynamics’ where agents choose their vote based on the majority of neighbors’ votes in the pre-
vious round. We analyze this model on regular trees [KM11]. At the other extreme is iterative
Bayesian learning: a fully rational model introduced by Gale and Kariv (2003). We introduce
new algorithms for this model, challenging a widespread belief that it is computationally in-
tractable [KT11]. A new technique we develop – the dynamic cavity method, serves as a key
tool for both models.

1 Majority dynamics

A voter sits on each vertex of a regular tree of degree k, and has to decide between two alternative
opinions. At each time step, each voter switches to the opinion of the majority of her neighbors.
We analyze this majority process when opinions are initialized to independent and identically
distributed random variables.

In particular, we bound the threshold value of the initial bias such that the process converges
to consensus. In order to prove an upper bound, we characterize the process of a single node in the
large k-limit. This approach is inspired by the theory of mean field spin-glass and can potentially
be generalized to a wider class of models. We also derive a lower bound that is nontrivial for small,
odd values of k.

As part of our analysis, we introduce a new tool, the dynamic cavity method. This method
yields an exact characterization of single node ‘vote’ trajectories for dynamic processes on trees.

2 Efficient Iterative Bayesian learning

We consider a set of agents who are attempting to iteratively learn the ‘state of the world’ from their
neighbors in a social network. Each agent initially receives a noisy observation of the true state of
the world. The agents then repeatedly ‘vote’ and observe the votes of some of their peers, from

∗Department of Electrical Engineering, Stanford University. Email: ykanoria@stanford.edu
†Department of Electrical Engineering and Department of Statistics, Stanford University. Email:

montanar@stanford.edu
‡Weizmann Institute. Email: omer.tamuz@weizmann.ac.il
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which they gain more information. The agents’ calculations are Bayesian and aim to myopically
maximize the expected utility at each iteration.

This model, introduced by Gale and Kariv (2003)[GK03], is a natural approach to learning
on networks. However, it has been criticized, chiefly because the agents’ decision rule appears
to become computationally intractable as the number of iterations advances. For instance, a dy-
namic programming approach (part of this work) has running time that is exponentially large in
min(n, (d− 1)t), where n is the number of agents.

We provide a new algorithm to perform the agents’ computations on locally tree-like graphs.
Our algorithm uses the dynamic cavity method to drastically reduce computational effort. Let d
be the maximum degree and t be the iteration number. The computational effort needed per agent
is exponential only in O(td) (note that the number of possible information sets of a neighbor at
time t is itself exponential in td).

Under appropriate assumptions on the rate of convergence, we deduce that each agent is only
required to spend polylogarithmic (in 1/ε) computational effort to approximately learn the true
state of the world with error probability ε, on regular trees of degree at least five. We provide
numerical and other evidence to justify our assumption on convergence rate.

We extend our results in various directions, including loopy graphs. Our results indicate effi-
ciency of iterative Bayesian social learning in a wide range of situations, contrary to widely held
beliefs.
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